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23.1.23.1.23.1.23.1.23.1. IntrIntrIntrIntrIntroductionoductionoductionoductionoduction
When elastic bodies such as a spring, a beam and a

shaft are displaced from the equilibrium position by the ap-
plication of external forces, and then released, they execute
a vibratory motion. This is due to the reason that, when a
body is displaced, the internal forces in the form of elastic
or strain energy are present in the body. At release, these
forces bring the body to its original position. When the body
reaches the equilibrium position, the whole of the elastic or
strain energy is converted into kinetic energy due to which
the body continues to move in the opposite direction. The
whole of the kinetic energy is again converted into strain
energy due to which the body again returns to the equilib-
rium position. In this way, the vibratory motion is repeated
indefinitely.

23.2.23.2.23.2.23.2.23.2. TTTTTerererererms Used in ms Used in ms Used in ms Used in ms Used in VVVVVibraibraibraibraibratortortortortory Motiony Motiony Motiony Motiony Motion

The following terms are commonly used in connec-
tion with the vibratory motions :
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1. Period of vibration or time period. It is the time interval after which the motion is
repeated itself. The period of vibration is usually expressed in seconds.

2. Cycle. It is the motion completed during one time period.

3. Frequency. It is the number of cycles described in one second. In S.I. units, the fre-
quency is expressed in hertz (briefly written as Hz) which is equal to one cycle per second.

23.3.23.3.23.3.23.3.23.3. Types of Vibratory MotionTypes of Vibratory MotionTypes of Vibratory MotionTypes of Vibratory MotionTypes of Vibratory Motion

The following types of vibratory motion are important from the subject point of view :
1. Free or natural vibrations. When no external force acts on the body, after giving it an

initial displacement, then the body is said to be under free or natural vibrations. The frequency of
the free vibrations is called free or natural frequency.

2. Forced vibrations. When the body vibrates under the influence of external force, then
the body is said to be under forced vibrations. The external force applied to the body is a periodic
disturbing force created by unbalance. The vibrations have the same frequency as the applied force.
Note : When the frequency of the external force is same as that of the natural vibrations, resonance takes
place.

3. Damped vibrations. When there is a reduction in amplitude over every cycle of vibration,
the motion is said to be damped vibration. This is due to the fact that a certain amount of energy
possessed by the vibrating system is always dissipated in overcoming frictional resistances to the
motion.

23.4.23.4.23.4.23.4.23.4. Types of Free VibrationsTypes of Free VibrationsTypes of Free VibrationsTypes of Free VibrationsTypes of Free Vibrations
The following three types of free vibrations are important from the subject point of view :

1. Longitudinal vibrations, 2. Transverse vibrations, and 3. Torsional vibrations.

Consider a weightless constraint (spring or shaft) whose one end is fixed and the other end
carrying a heavy disc, as shown in Fig. 23.1. This system may execute one of the three above
mentioned types of vibrations.

B = Mean position ; A and C = Extreme positions.

(a) Longitudinal vibrations.  (b) Transverse vibrations.     (c) Torsional vibrations.

Fig. 23.1. Types of free vibrations.

1. Longitudinal vibrations. When the particles of the shaft or disc moves parallel to the
axis of the shaft, as shown in Fig. 23.1 (a), then the vibrations are known as longitudinal vibrations.
In this case, the shaft is elongated and shortened alternately and thus the tensile and compressive
stresses are induced alternately in the shaft.
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2. Transverse vibrations. When the particles of the shaft or disc move approximately

perpendicular to the axis of the shaft, as shown in Fig. 23.1 (b), then the vibrations are known as
transverse vibrations. In this case, the shaft is straight and bent alternately and bending stresses are
induced in the shaft.

3. Torsional vibrations*. When the particles of the shaft or disc move in a circle about the
axis of the shaft, as shown in Fig. 23.1 (c), then the vibrations are known as torsional vibrations.
In this case, the shaft is twisted and untwisted alternately and the torsional shear stresses are in-
duced in the shaft.
Note : If the limit of proportionality (i.e. stress proportional to strain) is not exceeded in the three types of
vibrations, then the restoring force in longitudinal and transverse vibrations or the restoring couple in torsional
vibrations which is exerted on the disc by the shaft (due to the stiffness of the shaft) is directly proportional
to the displacement of the disc from its equilibrium or mean position. Hence it follows that the acceleration
towards the equilibrium position is directly proportional to the displacement from that position and the vibration
is, therefore, simple harmonic.

23.5.23.5.23.5.23.5.23.5. Natural Frequency of Free Longitudinal VibrationsNatural Frequency of Free Longitudinal VibrationsNatural Frequency of Free Longitudinal VibrationsNatural Frequency of Free Longitudinal VibrationsNatural Frequency of Free Longitudinal Vibrations
The natural frequency of the free longitudinal vibrations may be determined by the following

three methods :

1. Equilibrium Method

Consider a constraint (i.e. spring) of negligible mass in an unstrained position, as shown in
Fig. 23.2 (a).

 Let  s = Stiffness of the constraint. It is the force required to produce
unit displacement in the direction of vibration. It is usually
expressed in N/m.

m = Mass of the body suspended from the constraint in kg,

W = Weight of the body in newtons = m.g,

*     The torsional vibrations are separately discussed in chapter 24.

Bridges should be built taking vibrations into account.
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       δ = Static deflection of the spring in metres due to weight W
 newtons, and

             x = Displacement given to the body by the external force, in metres.

Fig. 23.2. Natural frequency of free longitudinal vibrations.

In the equilibrium position, as shown in Fig. 23.2 (b), the gravitational pull W = m.g, is
balanced by a force of spring, such that W = s. δ .

Since the mass is now displaced from its equilibrium position by a distance x, as shown in
Fig. 23.2 (c), and is then released, therefore after time t,

Restoring force           ( ) . .W s x W s s x= − δ + = − δ −

          . . . .s s s x s x= δ− δ− = −  . . . ( . )W s= δ∵  . . . (i)

 . . . (Taking upward force as negative)

and          Accelerating force = Mass × Acceleration

2

2

d x
m

dt
= × . . . (Taking downward force as positive) . .  . (ii)

Equating equations (i) and (ii), the equation of motion of the body of mass m after time t is

          
2

2
.

d x
m s x

dt
× = −    or    

2

2
. 0

d x
m s x

dt
× + =

∴
2

2
0

d x s
x

mdt
+ × =  . . . (iii)

We know that the fundamental equation of simple harmonic motion is

     
2

2
2

. 0
d x

x
dt

+ ω =  . . . (iv)

Comparing equations (iii) and (iv), we have

       
s

m
ω =

∴     Time period,      
2

2p
m

t
s

π= = π
ω
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and natural frequency,     1 1 1

2 2n
p

s g
f

t m
= = =

π π δ
. . . ( . . )m g s= δ∵

Taking the value of g as 9.81 m/s2 and δ in metres,

    
1 9.81 0.4985

Hz
2nf = =
π δ δ

Note : The value of static deflection δ may be found out from the given conditions of the problem. For
longitudinal vibrations, it may be obtained by the relation,

Stress

Strain
E=    or      

W l
E

A
× =

δ     or      
.

.

W l

E A
δ =

where                       δ   = Static deflection i.e. extension or compression of the constraint,

    W = Load attached to the free end of constraint,

      l = Length of the constraint,

    E = Young’s modulus for the constraint, and

     A = Cross-sectional area of the constraint.

2.  Energy method

We know that the kinetic
energy is due to the motion of the
body and the potential energy is
with respect to a certain datum
position which is equal to the
amount of work required to move
the body from the datum position.
In the case of vibrations, the
datum position is the mean or
equilibrium position at which the
potential energy of the body or the
system is zero.

In the free vibrations, no
energy is transferred to the system
or from the system. Therefore the
summation of kinetic energy and
potential energy must be a
constant quantity which is same at
all the times. In other words,

∴  ( . . . .) 0
d

K E P E
dt

+ =

We know that kinetic en-
ergy,

    
21

. .
2

dx
K E m

dt
 = ×   

∵

This industrial compressor uses compressed air to power heavy-
duty construction tools. Compressors are used for jobs, such
as breaking up concrete or paving, drilling, pile driving, sand-
blasting and tunnelling. A compressor works on the same prin-
ciple as a pump. A piston moves backwards and forwards in-
side a hollow cylinder, which compresses the air and forces it
into a hollow chamber. A pipe or hose connected to the cham-
ber channels the compressed air to the tools.

Note : This picture is given as additional information and
is not a direct example of the current chapter.
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and potential energy,           20 . 1
. . .

2 2

s x
P E x s x

+ = = ×  
. . . (∵P.E. = Mean force × Displacement )

∴          
2

21 1
. 0

2 2

d dx
m s x

dt dt

   × + ×  =    

           
2

2

1 1
2 2 0

2 2

dx d x dx
m s x

dt dtdt
× × × × + × × × =

or      
2

2
. 0

d x
m s x

dt
× + =     or     

2

2
0

d x s
x

mdt
+ × =  . . . (Same as before)

The time period and the natural frequency may be obtained as discussed in the previous
method.

3. Rayleigh’s method

In this method, the maximum kinetic energy at the mean position is equal to the maximum
potential energy (or strain energy) at the extreme position. Assuming the motion executed by the
vibration to be simple harmonic, then

       sin .x X t= ω . . . (i)

where          x = Displacement of the body from the mean position after time t
   seconds, and

          X = Maximum displacement from mean position to extreme position.

Now, differentiating equation (i), we have

     cos .
dx

X t
dt

= ω× ω

Since at the mean position, t = 0, therefore maximum velocity at the mean position,

        .
dx

v X
dt

= = ω

∴    Maximum kinetic energy at mean position

          2 2 21 1
. . .

2 2
m v m X= × = × ω  . . . (ii)

and maximum potential energy at the extreme position

          
20 . 1

.
2 2

s X
X s X

+ = = ×  
 . . . (iii)

Equating equations (ii) and (iii),

     2 2 21 1
. . .

2 2
m X s X× ω = ×     or   2 s

m
ω =  , and 

s

m
ω =

∴    Time period,        
2

2p
s

t
m

π= = π
ω

. . . (Same as before)
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and natural frequency, 1 1

2 2n
p

s
f

t m

ω
= = =

π π
. . . (Same as before)

Note : In all the above expressions, ωis known as natural circular frequency and is generally denoted by
ωn.

23.6.23.6.23.6.23.6.23.6. Natural Frequency of Free Transverse VibrationsNatural Frequency of Free Transverse VibrationsNatural Frequency of Free Transverse VibrationsNatural Frequency of Free Transverse VibrationsNatural Frequency of Free Transverse Vibrations
Consider a shaft of negligible mass, whose one

end is fixed and the other end carries a body of weight
W, as shown in Fig. 23.3.

Let            s = Stiffness of shaft,

         δ = Static deflection due to
    weight of the body,

            x = Displacement of body from

      mean position after time t.

           m = Mass of body = W/g

As discussed in the previous article,

    Restoring force  = – s.x . . . (i)

  and accelerating force       
2

2

d x
m

dt
= × . . . (ii)

Equating equations (i) and (ii), the equation of motion becomes

   
2

2
.

d x
m s x

dt
× = −       or      

2

2
. 0

d x
m s x

dt
× + =

∴     
2

2
0

d x s
x

mdt
+ × =                    . . . (Same as before )

Hence, the time period and the natural frequency of the transverse vibrations are same as
that of longitudinal vibrations. Therefore

Time period, 2p
m

t
s

= π

and natural frequency,    
1 1 1

2 2n
p

s g
f

t m
= = =

π π δ

Note : The shape of the curve, into which the vibrating shaft deflects, is identical with the static deflection
curve of a cantilever beam loaded at the end. It has been proved in the text book on Strength of Materials,
that the static deflection of a cantilever beam loaded at the free end is

3

3

Wl

EI
δ =  (in metres)

where            W = Load at the free end, in newtons,
l = Length of the shaft or beam in metres,

E = Young’s modulus for the material of the shaft or beam in
N/m2, and

I = Moment of inertia of the shaft or beam in m4.

Fig. 23.3. Natural frequency of free
       transverse vibrations.
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Example 23.1. A cantilever shaft 50 mm diameter and 300 mm long has a disc of mass
100 kg at its free end. The Young's modulus for the shaft material is 200 GN/m2. Determine the
frequency of longitudinal and transverse vibrations of the shaft.

Solution. Given : d = 50 mm = 0.05 m ; l = 300 mm = 0.03 m ; m = 100 kg ;
E = 200 GN/m2 = 200 ×109 N/m2

We know that cross-sectional area of the shaft,

       2 2 3 2(0.05) 1.96 10 m
4 4

A d −π π
= × = = ×

and moment of inertia of the shaft,

      
4 4 6 4(0.05) 0.3 10 m

64 64
I d −π π= × = = ×

Frequency of longitudinal vibration

We know that static deflection of the shaft,

               6
3 9

. 100 9.81 0.3
0.751 10

. 1.96 10 200 10

W l

A E
−

−
× ×δ = = = ×

× × ×
 m

( . )W m g=…∵

∴ Frequency of longitudinal vibration,

     
6

0.4985 0.4985
575

0.751 10
nf −

= = =
δ ×

 Hz  Ans.

Frequency of transverse vibration

We know that static deflection of the shaft,

      
3 3

3
9 6

. 100 9.81 (0.3)
0.147 10

3 . 3 200 10 0.3 10

W l

E I
−

−
× ×δ = = = ×

× × × ×
 m

∴     Frequency of transverse vibration,

     
3

0.4985 0.4985

0.147 10
nf −

= =
δ ×

 = 41 Hz Ans.

23.7.23.7.23.7.23.7.23.7. Effect of Inertia of the Constraint in Longitudinal and TransverseEffect of Inertia of the Constraint in Longitudinal and TransverseEffect of Inertia of the Constraint in Longitudinal and TransverseEffect of Inertia of the Constraint in Longitudinal and TransverseEffect of Inertia of the Constraint in Longitudinal and Transverse
VibrationsVibrationsVibrationsVibrationsVibrations
In deriving the expressions for natural frequency of

longitudinal and transverse vibrations, we have neglected the inertia
of the constraint i.e. shaft. We shall now discuss the effect of the
inertia of the constraint, as below :

1. Longitudinal vibration

Consider the constraint whose one end is fixed and other end
is free as shown in Fig. 23.4.

Let       m1 = Mass of the constraint per unit length,

       l = Length of the constraint,

     mC = Total mass of the constraint = m1. l, and

        v = Longitudinal velocity of the free end.

Fig. 23.4. Effect of inertia
of the constraint in

longitudinal vibrations.
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Consider a small element of the constraint at a distance x from the fixed end and of

length xδ .

∴   Velocity of the small element

          
x

v
l

= ×

and kinetic energy possessed by the element

          
1

2
=  × Mass (velocity)2

          
2 2 2

1
1 2

.1
.

2 2

m v xx
m x v x

l l

 = × δ × = × δ  
∴    Total kinetic energy possessed by the constraint,

         

2 2 2 3
1 1

2 20
0

. .

32 2

l
l m v x m v x

dx
l l

 
= × =  

 
∫

2 3
2 2 2C1 1

12

. .1 1 1
.

3 2 3 2 3 2 32

mm v m ll l
m v v v

l

  = × = × × = =      
. . . (i)

. . . (Substituting  m1 . l = mC)

If a mass of 
C

3

m
 is placed at the free end and the constraint is assumed to be of negligible

mass, then
Total kinetic energy possessed by the constraint

          
2C1

2 3

m
v

 =     . . . [Same as equation (i)] . . . (ii)

Hence the two systems are dynamically same. Therefore, inertia of the constraint may be
allowed for by adding one-third of its mass to the disc at the free end.

From the above discussion, we find that when the mass of the constraint mC and the mass
of the disc m at the end is given, then natural frequency of vibration,

      C

1

2
3

n
s

f
m

m
=

π +

2. Transverse vibration

Consider a constraint whose one end is fixed and the other
end is free as shown in Fig. 23.5.

Let       m1 = Mass of constraint per unit length,

        l = Length of the constraint,

      mC = Total mass of the constraint = m1.l, and

        v = Transverse velocity of the free end.

Consider a small element of the constraint at a distance x
from the fixed end and of length xδ . The velocity of this element is

Fig. 23.5. Effect of inertia
of the constraint in

transverse vibrations.
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given by 
2 3

3

3 .

2

l x x
v

l

 − × 
  

.

∴     Kinetic energy of the element

      

22 3

1 3

1 3 .
.

2 2

l x x
m x v

l

 −= × δ ×   
and total kinetic energy of the constraint,

      

2 22 3
2 4 5 61

1 3 6
0 0

.1 3 .
(9 . 6 . )

2 2 8

l l
m vl x x

m v dx l x l x x dx
l l

 −= × × = − +   
∫ ∫

      

2 2 5 6 7
1

6
0

. 9 . 6 .

5 6 78

l
m v l x l x x

l

 
= − + 

  

      

2 27 7 7 7
1 1

6 6

. .9 6 33

5 6 7 358 8

m v m vl l l l

l l

   
= − + =         

      
2 2 2

1 1 C
33 1 33 1 33

. . .
280 2 140 2 140

m l v m l v m v   = × = × = ×      
 . . . (i)

. . . (Substituting m1.l = mC)

If a mass of C33

140

m
 is placed at the free end and the constraint is assumed to be of negli-

gible mass, then
Total kinetic energy possessed by the constraint

      
2C331

2 140

m
v

 =   
. . . [Same as equation (i)]

Hence the two systems are dynamically same. Therefore the inertia of the constraint may

be allowed for by adding 
33

140
 of its mass to the disc at the free end.

From the above discussion, we find that when the mass of the constraint mC and the mass
of the disc m at the free end is given, then natural frequency of vibration,

 C

1
332
140

n
s

f
m

m
=

π +

Notes : 1. If both the ends of the constraint are fixed, and the disc is situated in the middle of it, then
proceeding in the similar way as discussed above, we may prove that the inertia of the constraint may be

allowed for by adding 
13

35
 of its mass to the disc.

2. If the constraint is like a simply supported beam, then 
17

35
 of its mass may be added to the mass

of the disc.
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23.8.23.8.23.8.23.8.23.8. Natural Frequency of Free Transverse Vibrations Due to a PointNatural Frequency of Free Transverse Vibrations Due to a PointNatural Frequency of Free Transverse Vibrations Due to a PointNatural Frequency of Free Transverse Vibrations Due to a PointNatural Frequency of Free Transverse Vibrations Due to a Point
Load Acting Over aLoad Acting Over aLoad Acting Over aLoad Acting Over aLoad Acting Over a Simply Supported ShaftSimply Supported ShaftSimply Supported ShaftSimply Supported ShaftSimply Supported Shaft
Consider a shaft AB of length l, carrying a point

load W at C which is at a distance of l1 from A and l2 from
B, as shown in Fig. 23.6. A little consideration will show
that when the shaft is deflected and suddenly released, it
will make transverse vibrations. The deflection of the shaft
is proportional to the load W and if the beam is deflected
beyond the static equilibrium position then the load will
vibrate with simple harmonic motion (as by a helical
spring). If δ is the static deflection due to load W, then the
natural frequency of the free transverse vibration is

     
1 0.4985

2n
g

f = =
π δ δ

 Hz  . . . (Substituting, g = 9.81 m/s2)

Some of the values of the static deflection for the various types of beams and under various
load conditions are given in the following table.

Table 23.1. Values of static deflection (Table 23.1. Values of static deflection (Table 23.1. Values of static deflection (Table 23.1. Values of static deflection (Table 23.1. Values of static deflection (δδδδδ) for the various types of beams) for the various types of beams) for the various types of beams) for the various types of beams) for the various types of beams
and under various load conditions.and under various load conditions.and under various load conditions.and under various load conditions.and under various load conditions.

S.No. Type of beam Deflection (δδδδδ)

1. Cantilever beam with a point load W at the δ =
3

3

Wl

EI
 (at the free end)

free end.

2. Cantilever beam with a uniformly δ =
4

8

wl

EI
 (at the free end)

distributed load of w per unit length.

3. Simply supported beam with an eccentric δ =
2 2

3

Wa b

E I l
 (at the point load)

point load W.

4. Simply supported beam with a central point δ =
3

48

W l

EI
 (at the centre)

load W.

Fig. 23.6. Simply supported beam
with a point load.
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5. Simply supported beam with a uniformly δ = ×
45

384

wl

EI
 (at the centre)

distributed load of w per unit length.

6. Fixed beam with an eccentric point load W. δ =
3 3

3

Wa b

E I l
 (at the point load)

7. Fixed beam with a central point load W. δ =
3

192

Wl

EI
 (at the centre)

8. Fixed beam with a uniformly distributed δ =
4

384

wl

EI
 (at the centre)

load of w per unit length.

Example 23.2. A shaft of length 0.75 m, supported freely at the ends, is carrying a body of
mass 90 kg at 0.25 m from one end. Find the natural frequency of transverse vibration. Assume
E = 200 GN/m2 and shaft diameter = 50 mm.

Solution. Given : l = 0.75 m ; m = 90 kg ; a = AC = 0.25 m ; E = 200 GN/m2 = 200 × 109

N/m2; d = 50 mm = 0.05 m

The shaft is shown in Fig. 23.7.

We know that moment of inertia of the shaft,

       
4 4 4(0.05) m

64 64
I d

π π= × =

          6 40.307 10 m−= ×
and static deflection at the load point (i.e. at point C),

       
2 2 2 2

3
9 6

90 9.81(0.25) (0.5)
0.1 10

3 3 200 10 0.307 10 0.75

Wa b

E I l
−

−
×δ = = = ×

× × × × ×
 m

. . . (∵b = BC = 0.5 m)

∵

S.No. Type of beam Deflection (δδδδδ)

Fig. 23.7
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We know that natural frequency of transverse vibration,

  
3

0.4985 0.4985

0.1 10
nf −

= =
δ ×

 = 49.85 Hz Ans.

Example 23.3. A flywheel is mounted on a vertical shaft as shown in Fig. 23.8. The both
ends of the shaft are fixed and its diameter is 50 mm. The flywheel has a mass of 500 kg. Find the
natural frequencies of longitudinal and transverse vibrations. Take E = 200 GN/m2.

Solution. Given : d = 50 mm = 0.05 m ; m = 500 kg ; E = 200 GN/m2 = 200 × 109 N/m2

We know that cross-sectional area of shaft,

   2 2 3(0.05) 1.96 10
4 4

A d −π π
= × = = ×  m2

and moment of inertia of shaft,

     
4 4 6 4(0.05) 0.307 10 m

64 64
I d −π π= × = = ×

Natural frequency of longitudinal vibration

Let     m1 = Mass of flywheel carried by the length l1.

∴           m – m1 = Mass of flywheel carried by length l2.
We know that extension of length l1

       1 1 1 1. . .

. .

W l m g l

A E A E
= = . . . (i)

Similarly, compression of length l2

       
1 2 1 2( ) ( ) .

. .

W W l m m g l

A E A E

− −
= =  . . . (ii)

Since extension of length l1 must be equal to compression of length l2, therefore equating
equations (i) and (ii),

 1 1 1 2. ( )m l m m l= −

       1 1 10.9 (500 ) 0.6 300 0.6m m m× = − = −  or 1 200m =  kg

∴     Extension of length l1,

    61 1
3 9

. . 200 9.81 0.9
4.5 10

. 1.96 10 200 10

m g l

A E
−

−
× ×δ = = = ×

× × ×
m

We know that natural frequency of longitudinal vibration,

   
6

0.4985 0.4985

4.5 10
nf −

= =
δ ×

 = 235 Hz Ans.

Natural frequency of transverse vibration

We know that the static deflection for a shaft fixed at both ends and carrying a point load
is given by

    
3 3 3 3

3
3 9 6 3

500 9.81(0.9) (0.6)
1.24 10

3 3 200 10 0.307 10 (1.5)

Wa b

E Il
−

−
×δ = = = ×

× × × ×
 m

. . . (Substituting W = m.g ; a = l1, and b = l2)

Fig. 23.8
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We know that natural frequency of transverse vibration,

    
3

0.4985 0.4985

1.24 10
nf −

= =
δ ×

 = 14.24 Hz   Ans.

23.9.23.9.23.9.23.9.23.9. Natural Frequency of Free Transverse Vibrations Due to UniformlyNatural Frequency of Free Transverse Vibrations Due to UniformlyNatural Frequency of Free Transverse Vibrations Due to UniformlyNatural Frequency of Free Transverse Vibrations Due to UniformlyNatural Frequency of Free Transverse Vibrations Due to Uniformly
Distributed Load Acting Over a Simply Supported ShaftDistributed Load Acting Over a Simply Supported ShaftDistributed Load Acting Over a Simply Supported ShaftDistributed Load Acting Over a Simply Supported ShaftDistributed Load Acting Over a Simply Supported Shaft
Consider a shaft AB carrying a uniformly distributed load of w per unit length as shown in

Fig. 23.9.
Let     y1 = Static deflection at the middle of the shaft,

     a1= Amplitude of vibration at the middle of the shaft, and
    w1 = Uniformly distributed load per unit static deflection at the

 middle of the shaft = w/y1.

Fig. 23.9. Simply supported shaft carrying a uniformly distributed load.

Now, consider a small section of the shaft at a distance x from A and length xδ .
Let        y = Static deflection at a distance x from A, and

     a = Amplitude of its vibration.
∴     Work done on this small section

         
1

1 1 1
1 1

1 1 1
. . .

2 2 2

aw
w a x a a x a w a x

y y
= × δ × = × × δ × = × × × × δ

Since the maximum potential energy at the extreme position is equal to the amount of work
done to move the beam from the mean position to one of its extreme positions, therefore

Maximum potential energy at the extreme position

         
1

10

1

2
.

l
a

w a dx
y

= × × ×∫  . . . (i)

Assuming that the shape of the curve of a vibrating shaft is similar to the static deflection
curve of a beam, therefore

     1

1

a a

y y
=  = Constant, C      or     1

1

a
C

y
=  and a = y.C

Substituting these values in equation (i), we have maximum potential energy at the extreme
position

        2

0 0

1 1
. . . .

2 2

l l

w C y C dx w C y dx= × × × = ×∫ ∫  . . . (ii)
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Since the maximum velocity at the mean position is 1.aω , where ωis the circular frequency

of vibration, therefore
Maximum kinetic energy at the mean position

          
2 2 2 2

0 0

1 .
( . ) .

2 2

l l
w dx w

a C y dx
g g

= × ω = ×ω ×∫ ∫  . . . (iii)

. . .(Substituting a = y.C )
We know that the maximum potential energy at the extreme position is equal to the maximum

kinetic energy at the mean position, therefore equating equations (ii) and (iii),

           
2 2 2 2

0 0

1
. .

2 2

l l
w

w C y dx C y dx
g

× × = ×ω ×∫ ∫

∴                  2 0

2

0

.

.

l

l

g y dx

y dx

ω =
∫

∫
      or       0

2

0

.

.

l

l

g y dx

y dx

ω=
∫

∫
. . . (iv)

When the shaft is a simply supported, then the static deflection at a distance x from A is

      *
4 3 3( 2 )

24

w
y x l x l x

EI
= − + . . . (v)

where        w = Uniformly distributed load unit length,

       E = Young’s modulus for the material of the shaft, and

        I = Moment of inertia of the shaft.

* It has been proved in books on ‘Strength of Materials’ that maximum bending moment at a distance x
from A is

        
2 2

2
( . .)

2 2max
d y wx wl x

B M EI
dx

= = −

Integrating this expression,

 
3 2

1
.

.
2 3 2 2

dy wx wl x
EI C

dx
= − +

× ×
On further integrating,

  
4 3

1 2
.

. .
2 3 4 2 2 3

= − + +
× × × ×
wx wl x

E I y C x C

          
4 3

1 224 12
= − + +wx wlx

C x C

where C1 and C2 are the constants of integration and may be determined from the given conditions of
the problem. Here

        when          x = 0, y = 0 ;              ∴       C2 = 0

        and when          x = l, y = 0 ;    ∴       C1 = 
3

24

wl

Substituting the value of C1, we get

       
4 3 3( 2 )

24
= − +w

y x l x l x
EI
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Now integrating the above equation (v) within the limits from 0 to l,

 

5 4 3 2
4 3 3

00 0

2
( 2 )

24 24 5 4 2

ll l
w w x lx l x

y dx x lx l x dx
EI EI

 
= − + = − + 

 
∫ ∫

           
5 5 5 5 52 .

24 5 4 2 24 5 120 .

w l l l w l wl

EI EI E I

 
= − + = × = 

 
 . . . (vi)

Now
2

2 4 3 3

0 0

( 2 )
24

l l
w

y dx x l x l x dx
EI

 
= − + 

 ∫ ∫

           

2
8 2 6 6 2 7 4 4 3 5

0

( 4 4 4 2 )
24

l
w

x l x l x l x l x l x dx
EI

 
= + + − − + 

  ∫

           
2 9 2 7 6 3 8 4 5 3 6

2 2
0

4 4 4 2

9 7 3 8 5 6576

 
= ⋅ + + − − + 

  

l
w x l x l x lx l x l x

E I

           

2 9 9 9 9 9 9

2 2

4 4 4 2

9 7 3 8 5 6576

w l l l l l l

E I

 
= + + − − + 

 

           
2 9

2 2

31

630576

w l

E I
= × . . . (vii)

Substituting the value in equation (iv) from equations (vi) and (vii), we get circular frequency
due to uniformly distributed load,

        
5 2 2

2 9

576 630

120 31

wl E I
g

EI w l

 ×ω = ×  × 

A railway bridge.
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2

4 4

24 630

155

EI EI g
g

wl wl
= × = π  . . . (viii)

∴    Natural frequency due to uniformly distributed load,

     
2

4 42 2 2n
EI g EIg

f
wl wl

ω π π= = =
π π . . . (ix)

We know that the static deflection of a simply supported shaft due to uniformly distributed
load of w per unit length, is

      
4

S
5

384

wl

EI
δ =       or     

4
S

5

384

EI

wl
=

δ
Equation (ix) may be written as

     
S S

5 0.5615

2 384n
g

f
π

= =
δ δ

 Hz . . . (Substituting, g = 9.81 m/s2)

23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at
 Both Ends  Carrying a Uniformly Distributed Load Both Ends  Carrying a Uniformly Distributed Load Both Ends  Carrying a Uniformly Distributed Load Both Ends  Carrying a Uniformly Distributed Load Both Ends  Carrying a Uniformly Distributed Load
Consider a shaft AB fixed at both ends

and carrying a uniformly distributed load of w
per unit length as shown in Fig. 23.10.

We know that the static deflection at a
distance x from A is given by

      *
4 2 2 3( 2 )

24

w
y x l x lx

EI
= + −  . . . (i)

*      It has been proved in books on ‘Strength of Materials’ that the bending moment at a distance x from A is

       
2 2 2

2 12 2 2
= = + −d y wl wx wlx

M EI
dx

Integrating this equation,

 
2 3 2

112 2 3 2 2
= + − +

× ×
dy wl wx wlx

EI x C
dx

where C1 is the constant of integration. We know that when 0, 0= =dy
x

dx
. Therefore C1 = 0.

or
2 3 2

12 6 4
= + −dy wl wx wlx

EI x
dx

Integrating the above equation,

   
2 2 4 3 2 2 4 3

2.
12 2 6 4 4 3 24 24 12

= + − × + = + − +
× ×

wl x wx wl x wl x wx wlx
EI y C C

where C2 is the constant of integration. We know that when x = 0, y = 0. Therefore C2 = 0.

or
2 2 4 3. ( 2 )

24
= + −w

EI y l x x lx

or
4 2 2 3( 2 )

24
= + −w

y x l x lx
EI

Fig. 23.10. Shaft fixed at both ends
carrying a uniformly distributed load.
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Integrating the above equation within limits from 0 to l,

 
4 2 2 3

0 0

( 2 )
24

l l
w

y dx x l x l x dx
EI

= + −∫ ∫

          

5 2 3 4 5 5 5

0

2 2

24 5 3 4 24 5 3 4

l
w x l x l x w l l l

EI EI

   
= + − = + −   

   

          
5 5

24 30 720

w l wl

EI EI
= × =

Now integrating y2 within the limits from 0 to l,

           

2
2 4 2 2 3 2

0 0

( 2 )
24

ll
w

y dx x l x l x dx
EI

 
= + − 

 ∫ ∫

          

2
8 4 4 2 6 2 6 7 3 5

0

( 4 2 4 2 )
24

l
w

x l x l x l x l x l x dx
EI

 
= + + + − − 

  ∫

          

2
8 4 4 2 6 7 3 5

0

( 6 4 2 )
24

l
w

x l x l x l x l x dx
EI

 
= + + + − 

  ∫

          

2 9 4 5 2 7 8 3 6

0

6 4 2

24 9 5 7 8 6

l
w x l x l x l x l x

EI

  
= + + − −  

   

          

2 29 9 9 9 9 96 4 2

24 9 5 7 8 6 24 630

w l l l l l w l

EI EI

    
= + + − − =    

    
We know that

    

5 2
02

2 9 4
2

0

(24 ) 630 504

720

l

l

g y dx

wl EI EIg
g

EI w l wl
y dx

×ω = = × × =
∫

∫

∴
4

504 EIg

wl
ω =

and natural frequency,

     4 4

1 504
3.573

2 2n
EIg E I g

f
wl wl

ω
= = =

π π
Since the static deflection of a shaft fixed at both ends and carrying a uniformly distributed

load is

     
4

S 384

wl

EI
δ =       or    

4
S

1

384

E I

wl
=

δ

∴                     
S S

0.571
3.573

384n
g

f = =
δ δ

 Hz . . . (Substituting, g = 9.81 m/s2)
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23.11.23.11.23.11.23.11.23.11.Natural Frequency of Free Transverse Vibrations For a ShaftNatural Frequency of Free Transverse Vibrations For a ShaftNatural Frequency of Free Transverse Vibrations For a ShaftNatural Frequency of Free Transverse Vibrations For a ShaftNatural Frequency of Free Transverse Vibrations For a Shaft
Subjected to a Number of Point LoadsSubjected to a Number of Point LoadsSubjected to a Number of Point LoadsSubjected to a Number of Point LoadsSubjected to a Number of Point Loads
Consider a shaft AB of negligible mass loaded with

point loads W1 , W2, W3 and W4 etc. in newtons, as shown
in Fig. 23.11. Let m1, m2, m3 and m4 etc. be the corre-
sponding masses in kg. The natural frequency of such a
shaft may be found out by the following two methods :

1. Energy (or Rayleigh’s) method

Let y1, y2, y3, y4 etc. be total deflection under loads
W1, W2, W3 and W4 etc. as shown in Fig. 23.11.

We know that maximum potential energy

      1 1 2 2 3 3 4 4
1 1 1 1

. . . . . . . . .....
2 2 2 2

m g y m g y m g y m g y= × + × + + × +

      
1

. .
2

m g y= Σ

and maximum kinetic energy

      2 2 2 2
1 1 2 2 3 3 4 4

1 1 1 1
( . ) ( . ) ( . ) ( . ) ......

2 2 2 2
m y m y m y m y= × ω + × ω + × ω + × ω +

      2 2 2 2 2
1 1 2 2 3 3 4 4

1
( ) ( ) ( ) ( ) ....

2
m y m y m y m y = × ω + + + + 

      2 21
.

2
m y= × ω Σ . . . ( where ω = Circular frequency of vibration)

Equating the maximum kinetic energy to the maximum potential energy, we have

2 21 1
. . .

2 2
m y m g y× ω Σ = Σ

∴ 2
2 2

. . .

. .

m g y g m y

m y m y

Σ Σω = =
Σ Σ

          or      
2

.

.

g m y

m y

Σω =
Σ

∴    Natural frequency of transverse vibration,

 2

1 .

2 2 .
n

g m y
f

m y

ω Σ= =
π π Σ

2. Dunkerley’s method

The natural frequency of transverse vibration for a shaft carrying a number of point loads
and uniformly distributed load is obtained from Dunkerley’s empirical formula. According to this

         2 2 2 2 2
1 2 3

1 1 1 1 1
....

( ) ( ) ( ) ( ) ( )n n n n nsf f f f f
= + + + +

Fig. 23.11. Shaft carrying a
number of point loads.
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where                       fn = Natural frequency of transverse vibration of the shaft
  carrying point loads and uniformly distributed load.

        1 2 3, ,n n nf f f , etc.  =   Natural frequency of transverse vibration of each point load.

   nsf  =  Natural frequency of transverse vibration of the uniformly

  distributed load (or due to the mass of the shaft).

Now, consider a shaft AB loaded as shown in Fig. 23.12.

Fig. 23.12. Shaft carrying a number of point loads and a uniformly distributed load.

Let 1 2 3, , ,δ δ δ  etc. =  Static deflection due to the load W1, W2, W3 etc. when

  considered separately.

     Sδ  =   Static deflection due to the uniformly distributed load or due

   to the mass of the
   shaft.

We know that natural frequency of transverse
vibration due to load W1,

    
1

1

0.4985
nf =

δ
 Hz

Similarly, natural frequency of transverse vibra-
tion due to load W2,

   2
2

0.4985
nf =

δ
 Hz

and, natural frequency of transverse vibration due to load
W3,

   
3

3

0.4985
nf =

δ
 Hz

Also natural frequency of transverse vibration
due to uniformly distributed load or weight of the shaft,

    
S

0.5615
nsf =

δ
 Hz

Therefore, according to Dunkerley’s empirical
formula, the natural frequency of the whole system,

2 2 2 3 2
1 2 3

1 1 1 1 1
....

( ) ( ) ( ) ( ) ( )n n n n nsf f f f f
= + + + +

         
3 S1 2

2 2 2 2
....

(0.4985) (0.4985) (0.4985) (0.5615)

δ δδ δ
= + + + +

         
S

1 2 32

1
....

1.27(0.4985)

δ = δ + δ + δ + +  

Suspension spring of an automobile.
Note : This picture is given as additional

information and is not a direct example of the
current chapter.



Chapter 23 : Longitudinal and Transverse Vibrations           �          929

or     
S

1 2 3

0.4985

....
1.27

nf =
δδ + δ + δ + +

 Hz

Notes : 1. When there is no uniformly distributed load or mass of the shaft is negligible, then S 0δ = .

∴
1 2 3

0.4985

....
nf =

δ + δ + δ +
 Hz

2. The value of 1 2 3, ,δ δ δ  etc. for a simply supported shaft may be obtained from the relation

       

2 2

3

Wa b

EIl
δ =

where        δ  = Static deflection due to load W,

             a and b = Distances of the load from the ends,

        E = Young’s modulus for the material of the shaft,

        I = Moment of inertia of the shaft, and

       l = Total length of the shaft.

Example 23.4. A shaft 50 mm diameter and 3 metres long is simply supported at the ends
and carries three loads of 1000 N, 1500 N and 750 N at 1 m, 2 m and 2.5 m from the left support.
The Young's modulus for shaft material is 200 GN/m2. Find the frequency of transverse vibration.

Solution. Given : d = 50 mm = 0.05 m ; l = 3 m, W1 = 1000 N ; W2 = 1500 N ;
W3 = 750 N; E = 200 GN/m2 = 200 × 109 N/m2

The shaft carrying the loads is shown in Fig. 23.13

We know that moment of inertia of the shaft,

       
4 4 6 4(0.05) 0.307 10 m

64 64
I d −π π= × = = ×

and the static deflection due to a point load W,

      
2 2

3

Wa b

EIl
δ =

Fig. 23.13

∴      Static deflection due to a load of 1000 N,

     
2 2

3
1 9 6

1000 1 2
7.24 10

3 200 10 0.307 10 3
−

−
× ×δ = = ×

× × × × ×
 m

. . . (Here a = 1 m, and b = 2 m)
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Similarly, static deflection due to a load of 1500 N,

      
2 2

3
2 9 6

1500 2 1
10.86 10

3 200 10 0.307 10 3
−

−
× ×δ = = ×

× × × × ×
 m

. . . (Here a = 2 m, and b = 1 m)
and static deflection due to a load of 750 N,

     
2 2

3
3 9 6

750(2.5) (0.5)
2.12 10

3 200 10 0.307 10 3
−

−δ = = ×
× × × × ×

 m

. . . (Here a = 2.5 m, and b = 0.5 m)
We know that frequency of transverse vibration,

                     3 3 31 2 3

0.4985 0.4985

7.24 10 10.86 10 2.12 10
nf − − −

= =
δ + δ + δ × + × + ×

          
0.4985

0.1422
= = 3.5 Hz Ans.

23.12.23.12.23.12.23.12.23.12. Critical or Whirling Speed of a ShaftCritical or Whirling Speed of a ShaftCritical or Whirling Speed of a ShaftCritical or Whirling Speed of a ShaftCritical or Whirling Speed of a Shaft
In actual practice, a rotating shaft carries different mountings and accessories in the form

of gears, pulleys, etc. When the gears or pulleys are put on the shaft, the centre of gravity of the
pulley or gear does not coincide with the centre line of the bearings or with the axis of the shaft,
when the shaft is stationary. This means that the centre of gravity of the pulley or gear is at a
certain distance from the axis of rotation and due to this, the shaft is subjected to centrifugal force.
This force will bent the shaft which will further increase the distance of centre of gravity of the
pulley or gear from the axis of rotation. This correspondingly increases the value of centrifugal
force, which further increases the distance of centre of gravity from the axis of rotation. This effect
is cumulative and ultimately the shaft fails. The bending of shaft not only depends upon the value
of eccentricity (distance between centre of gravity of the pulley and the axis of rotation) but also
depends upon the speed at which the shaft rotates.

The speed at which the shaft runs so that the additional deflection of the shaft from
the axis of rotation becomes infinite, is known as critical or whirling speed.

(a) When shaft is stationary. (b) When shaft is rotating.

Fig. 23.14. Critical or whirling speed of a shaft.

Consider a shaft of negligible mass carrying a rotor, as shown in Fig.23.14 (a). The point
O is on the shaft axis and G is the centre of gravity of the rotor. When the shaft is stationary, the
centre line of the bearing and the axis of the shaft coincides. Fig. 23.14 (b) shows the shaft when
rotating about the axis of rotation at a uniform speed of ω rad/s.

Let        m = Mass of the rotor,
         e = Initial distance of centre of gravity of the rotor from the centre
             line of the bearing or shaft axis, when the shaft is stationary,
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        y = Additional deflection of centre of gravity of the rotor when

  the shaft starts rotating at ω rad/s, and

         s = Stiffness of the shaft i.e. the load required per unit deflection
  of the shaft.

Since the shaft is rotating at ω rad/s, therefore centrifugal force acting radially outwards
through G causing the shaft to deflect is given by

     2
C . ( )F m y e= ω +

The shaft behaves like a spring. Therefore the force resisting the deflection y,

         = s.y

For the equilibrium position,

    2. ( ) .m y e s yω + =

or            2 2. . . . .m y m e s yω + ω =     or   2 2( . ) . .y s m m e− ω = ω

∴        
2 2

2 2

. . .

. /

m e e
y

s m s m

ω ω= =
− ω − ω

. . . (i)

We know that circular frequency,

     n
s

m
ω =     or    

2

2 2

.

( )n

e
y

ω
=

ω − ω
. . . [ From equation (i) ]

A little consideration will show that when nω > ω , the value of y will be negative and the

shaft deflects is the opposite direction as shown dotted in Fig 23.14 (b).

In order to have the value of y always positive, both plus and minus signs are taken.

∴              
2

2 2 2 2( )
1 1n n c

e e e
y

ω ± ±= ± = =
ω − ω ω ω   − −   ω ω   

... (Substituting n cω = ω )

We see from the above expression that when n cω = ω , the value of y becomes infinite.

Therefore cω  is the critical or whirling speed.

∴      Critical or whirling speed,

    c n
s g

m
ω = ω = =

δ
 Hz . . . .m g

s
 δ =  
∵

If Nc is the critical or whirling speed in r.p.s., then

 2 c
g

Nπ =
δ

     or   
1 0.4985

r.p.s.
2c

g
N = =

π δ δ
where      δ  = Static deflection of the shaft in metres.

Hence the critical or whirling speed is the same as the natural frequency of transverse
vibration but its unit will be revolutions per second.
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Notes : 1. When the centre of gravity of the
rotor lies between the centre line of the shaft
and the centre line of the bearing, e is taken
negative. On the other hand, if the centre of
gravity of the rotor does not lie between the
centre line of the shaft and the centre line of
the bearing (as in the above article) the value
of e is taken positive.

2. To determine the critical speed of a
shaft which may be subjected to point loads,
uniformly distributed load or combination of
both, find the frequency of transverse vibration
which is equal to critical speed of a shaft in
r.p.s. The Dunkerley’s method may be used for
calculating the frequency.

3. A shaft supported is short bearings
(or ball bearings) is assumed to be a simply sup-
ported shaft while the shaft supported in long
bearings (or journal bearings) is assumed to
have both ends fixed.

Example 23.5. Calculate the
whirling speed of a shaft 20 mm diameter
and 0.6 m long carrying a mass of 1 kg at
its mid-point. The density of the shaft ma-
terial is 40 Mg/m3, and Young’s modulus is 200 GN/m2. Assume the shaft to be freely supported.

Solution. Given : d = 20 mm = 0.02 m ; l = 0.6 m ; m1 = 1 kg ; ρ  = 40 Mg/m3

= 40 × 106 g/m3 = 40 × 103 kg/m3 ; E = 200 GN/m2 = 200 × 109 N/m2

The shaft is shown in Fig. 23.15.

We know that moment of inertia of the shaft,

       
4 4 4(0.02) m

64 64
I d

π π= × =

          = 7.855 × 10–9 m4

Since the density of shaft material is 40 × 103 kg/m3,
therefore mass of the shaft per metre length,

     2 3
S Area length density (0.02) 1 40 10

4
m

π= × × = × × ×  = 12.6 kg/m

We know that static deflection due to 1 kg of mass at the centre,

        
3 3

6
9 9

1 9.81(0.6)
28 10

48 48 200 10 7.855 10

Wl

EI
−

−
×δ = = = ×

× × × ×
 m

and static deflection due to mass of the shaft,

       
4 4

3
S 9 9

5 5 12.6 9.81(0.6)
0.133 10

384 384 200 10 7.855 10

wl

EI
−

−
× ×δ = = = ×

× × × ×
 m

Fig. 23.15

Diesel engines have several advantages over petrol
engines. They do not need an electrical ignition system;
they use cheaper fuel; and they do not need a
carburettor. Diesel engines also have a greater ability
to convert the stored energy in the fuel into mechanical
energy, or work.
Note : This picture is given as additional information and is

not a direct example of the current chapter.

Exhaust
valve

Intake
valve

Compression Exhaust

Fuel injector Power
Induction

Burned
gases

Piston

Air intake

Crankshaft
Compressed air
and fuel mixture Fuel injection

and combustion
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∴     Frequency of transverse vibration,

    
3

S 6

0.4985 0.4985

0.133 10
28 10

1.27 1.27

nf −
−

= +
δ ×δ + × +

         
3

0.4985

11.52 10−=
×

 = 43.3 Hz

Let       Nc= Whirling speed of a shaft.

We know that whirling speed of a shaft in r.p.s. is equal to the frequency of transverse
vibration in Hz , therefore

    Nc = 43.3 r.p.s. = 43.3 × 60 = 2598 r.p.m. Ans.
Example 23.6. A shaft 1.5 m long, supported in flexible bearings at the ends carries two

wheels each of 50 kg mass. One wheel is situated at the centre of the shaft and the other at a
distance of 375 mm from the centre towards left. The shaft is hollow of external diameter 75 mm
and internal diameter 40 mm. The density of the shaft material is 7700 kg/m3 and its modulus of
elasticity is 200 GN/m2. Find the lowest whirling speed of the shaft, taking into account the mass
of the shaft.

Solution. l = 1.5 m ; m1 = m2 = 50 kg ;
d1 = 75 mm = 0.075 m ; d2 = 40 mm = 0.04 m ;

ρ = 7700 kg/m3 ; E = 200 GN/m2 = 200 × 109

N/m2

The shaft is shown in Fig. 23.16.

We know that moment of inertia of the shaft,

      
4 4 4 4 6 4

1 2( ) ( ) (0.075) (0.04) 1.4 10 m
64 64

I d d −π π   = − = − = ×   
Since the density of shaft material is 7700 kg/m3, therefore mass of the shaft per metre

length,
     mS = Area × length × density

         2 2(0.075) (0.04) 1 7700
4

π = − ×   = 24.34 kg/m

We know that the static deflection due to a load W

         
2 2 2 2.

3 3

Wa b m ga b

EIl EIl
= =

∴     Static deflection due to a mass of 50 kg at C,

     
2 2 2 2

1
1 9 6

50 9.81(0.375) (1.125)

3 3 200 10 1.4 10 1.5

m ga b

EIl −
×δ = =

× × × × ×
 = 70 × 10–6 m

. . . (Here a = 0.375 m, and b = 1.125 m)
Similarly, static deflection due to a mass of 50 kg at D

    
2 2 2 2

1
2 9 6

50 9.81(0.75) (0.75)

3 3 200 10 1.4 10 1.5

m ga b

EIl −
×δ = =

× × × × ×
 = 123 × 10–6 m

. . . (Here a = b = 0.75 m)

Fig. 23.16
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We know that static deflection due to uniformly distributed load or mass of the shaft,

 
4 4

S 9 6

5 5 24.34 9.81(1.5)

384 384 200 10 1.4 10

wl

EI −
×δ = × = ×

× × ×
 = 56 × 10–6 m

. . . (Substituting, w = mS × g)
We know that frequency of transverse vibration,

6
S 6 6

1 2

0.4985 0.4985

56 10
70 10 123 10

1.27 1.27

nf −
− −

= =
δ ×δ + δ + × + × +

 Hz

   = 32.4 Hz

Since the whirling speed of shaft (Nc ) in r.p.s. is equal to the frequency of transverse
vibration in Hz, therefore

Nc = 32.4 r.p.s. = 32.4 × 60 = 1944 r.p.m. Ans.
Example 23.7. A vertical shaft of 5 mm diameter is 200 mm long and is supported in long

bearings at its ends. A disc of mass 50 kg is attached to the centre of the shaft. Neglecting any
increase in stiffness due to the attachment of the disc to the shaft, find the critical speed of rotation
and the maximum bending stress when the shaft is rotating at 75% of the critical speed. The centre
of the disc is 0.25 mm from the geometric axis of the shaft. E = 200 GN/m2.

Solution. Given : d = 5 mm = 0.005 m ; l = 200 mm = 0.2 m ; m = 50 kg ; e = 0.25 mm
= 0.25 × 10–3 m ; E = 200 GN/m2 = 200 × 109 N/m2

Critical speed of rotation

We know that moment of inertia of the shaft,

  
4 4 12 4(0.005) 30.7 10 m

64 64
I d −π π= × = = ×

Since the shaft is supported in long bearings, it is assumed to be fixed at both ends. We
know that the static deflection at the centre of the shaft due to a mass of 50 kg,

  
3 3

3
9 12

50 9.81(0.2)
3.33 10 m

192 192 200 10 30.7 10

Wl

EI
−

−
×δ = = = ×

× × × ×

 . . .  (∵  W = m.g)

We know that critical speed of rotation (or natural frequency of transverse vibrations),

3

0.4985

3.33 10
cN

−
=

×
 = 8.64 r.p.s. Ans.

Maximum bending stress

Let σ  = Maximum bending stress in N/m2, and

  N = Speed of the shaft = 75% of critical speed = 0.75 Nc . . . (Given)

When the shaft starts rotating, the additional dynamic load (W1) to which the shaft is
subjected, may be obtained by using the bending equation,

1

M

I y

σ=       or      
1

.I
M

y

σ=
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We know that for a shaft fixed at both ends and carrying a point load (W1) at the centre, the

maximum bending moment

                   1.

8

W l
M =

∴      1.

8 / 2

W l I

d

σ⋅=  . . .(∵  y1 = d / 2)

and        
12

6
1

. 8 30.7 10 8
0.49 10 N

/ 2 0.005 / 2 0.2

I
W

d l

−
−σ σ× ×= × = × = × σ

∴    Additional deflection due to load W1,

         
6

3 121 0.49 10
3.33 10 3.327 10

50 9.81

W
y

W

−
− −× σ= ×δ = × × = × σ

×
We know that

                    
2

11
cc

e e
y

N

N

± ±= =
 ω  − −   ω 

           . . . (Substituting c cNω = and Nω = )

   

3
12 3

2

0.25 10
3.327 10 0.32 10

1
0.75

c

c

N

N

−
− −± ×× σ = = ± ×

 
− 

 

       3 12 9 20.32 10 / 3.327 10 0.0962 10 N / m− −σ = × × = ×  …( Taking + ve sign )

          = 96.2 × 106 N/m2 = 96.2 MN/m2 Ans.

Example 23.8. A vertical steel shaft 15 mm diameter is held in long bearings 1 metre
apart and carries at its middle a disc of mass 15 kg. The eccentricity of the centre of gravity of the
disc from the centre of the rotor is 0.30 mm.

The modulus of elasticity for the shaft material is 200 GN/m2 and the permissible stress is
70 MN/m2. Determine : 1. The critical speed of the shaft and 2. The range of speed over which it
is unsafe to run the shaft. Neglect the mass of the shaft.

[For a shaft with fixed end carrying a concentrated load (W) at the centre assume 
3

192

Wl

EI
δ = ,

and M = 
.

8

W l
, where δ  and M are maximum deflection and bending moment respectively].

Solution. Given : d = 15 mm = 0.015 m ; l = 1 m ; m = 15 kg ; e = 0.3 mm
= 0.3 × 10–3 m ; E = 200 GN/m2 = 200 × 109 N/m2 ; σ  = 70 MN/m2 = 70 × 106 N/m2

We know that moment of inertia of the shaft,

4 4 9 4(0.015) 2.5 10 m
64 64

I d −π π= × = = ×

1. Critical speed of the shaft

Since the shaft is held in long bearings, therefore it is assumed to be fixed at both ends. We
know that the static deflection at the centre of shaft,

                     
3 3

3
9 9

15 9.81 1
1.5 10 m

192 192 200 10 2.5 10

Wl

EI
−

−
× ×δ = = = ×

× × × ×
    …(∵ W = m.g)
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∴     Natural frequency of transverse vibrations,

     3

0.4985 0.4985
12.88Hz

1.5 10
nf −

= = =
δ ×

We know that the critical speed of the shaft in r.p.s. is equal to the natural frequency of
transverse vibrations in Hz.

∴      Critical speed of the shaft,

     Nc = 12.88 r.p.s. = 12.88 × 60 = 772.8 r.p.m. Ans.

2. Range of speed

Let       N1 and N2 = Minimum and maximum speed respectively.

When the shaft starts rotating, the additional dynamic load (W1 = m1.g) to which the shaft
is subjected may be obtained from the relation

    
1

M

I y

σ= or
1

.I
M

y

σ=

Since       1 1. . .

8 8

W l m g l
M = =  ,    and    1 2

d
y = , therefore

1. . .

8 / 2

m g l I

d

σ=

or      
6 9

1
8 2 8 2 70 10 2.5 10

19 kg
. . 0.015 9.81 1

I
m

d g l

−× × σ× × × × × ×= = =
× ×

∴    Additional deflection due to load W1 = m1g,

   
3 31 1 19

1.5 10 1.9 10 m
15

W m
y

W m
− −= ×δ = ×δ = × × = ×

We know that,

      
2

1c

e
y

±=
ω  − ω 

     or    
2

1

1c

y

e N

N

± =
  −  

. . . (Substituting, c cNω =  , and Nω = )

∴      
3

3 2

1.9 10 1

0.3 10
1cN

N

−

−
×± =
×   −  

      or    

2
0.3

1 0.16
1.9

cN

N

  − = ± = ±  

         

2

1 0.16 1.16cN

N
  = ± =  

 or     0.84

 . . . (Taking first plus sign and then negative sign)

or      
1.16

cN
N =           or      

0.84
cN
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∴ 1
772.8

718 r.p.m.
1.16 1.16

cN
N = = =

and 2
772.8

843 r.p.m.
0.84 0.84

cN
N = = =

Hence the range of speed is from 718 r.p.m. to 843 r.p.m. Ans.

23.13. Frequency of Free Damped Vibrations (Viscous Damping)23.13. Frequency of Free Damped Vibrations (Viscous Damping)23.13. Frequency of Free Damped Vibrations (Viscous Damping)23.13. Frequency of Free Damped Vibrations (Viscous Damping)23.13. Frequency of Free Damped Vibrations (Viscous Damping)
We have already discussed that the motion of a body is resisted by frictional forces. In

vibrating systems, the effect of friction is referred to as damping. The damping provided by fluid
resistance is known as viscous damping.

We have also discussed that in damped
vibrations, the amplitude of the resulting vibration
gradually diminishes. This is due to the reason that
a certain amount of energy is always dissipated to
overcome the frictional resistance. The resistance
to the motion of the body is provided partly by the
medium in which the vibration takes place and
partly by the internal friction, and in some cases
partly by a dash pot or other external damping
device.

Consider a vibrating system, as shown in
Fig. 23.17, in which a mass is suspended from one
end of the spiral spring and the other end of which
is fixed. A damper is provided between the mass
and the rigid support.

Let   m = Mass suspended from the spring,

 s = Stiffness of the spring,

  x = Displacement of the mass from
the mean position at time t,

δ = Static deflection of  the spring
= m.g/s, and

 c = Damping coefficient or the damping
    force per unit velocity.

Since in viscous damping, it is assumed that the frictional
resistance to the motion of the body is directly proportional to
the speed of the movement, therefore

Damping force or frictional force on the mass acting in
opposite direction to the motion of the mass

dx
c

dt
= ×

Accelerating force on the mass, acting along the
motion of the mass

2

2

d x
m

dt
= ×

Riveting Machine
Note : This picture is given as

additional information and is not a
direct example of the current chapter.

Fig. 23.17. Frequency of free damped
vibrations.
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and spring force on the mass, acting in opposite direction to the motion of the mass,
          = s.x

Therefore the equation of motion becomes

         
2

2
.

d x dx
m c s x

dtdt

 × = − × +  
 …(Negative sign indicates that the force opposes the motion)

or      
2

2
. 0

d x dx
m c s x

dtdt
× + × + =

or    
*

 
2

2
0

d x c dx s
x

m dt mdt
+ × + × =

This is a differential equation of the second order. Assuming a solution of the form
x = ek t where k is a constant to be determined. Now the above differential equation reduces to

2. . 0kt kt ktc s
k e k e e

m m
+ × + × = …

2
2

2
, and .kt ktdx d x

ke k e
dt dt

 
= = 

  
∵

or 2 0
c s

k k
m m

+ × + =  . . . (i)

and       

2

4

2

c c s

m m m
k

 − ± − ×  =

          
2

2 2

c c s

m m m
 = − ± −  

∴      The two roots of the equation are

     
2

1 2 2

c c s
k

m m m
 = − + −  

and       
2

2 2 2

c c s
k

m m m
 = − − −  

The most general solution of the differential equation (i) with its right hand side equal to
zero has only complementary function and it is given by

       1 2
1 2

k t k tx C e C e= +  . . . (ii)

where C1 and C2 are two arbitrary constants which are to be determined from the initial conditions
of the motion of the mass.

It may be noted that the roots k1 and k2 may be real, complex conjugate (imaginary) or
equal. We shall now discuss these three cases as below :

*  A system described by this equation is said to be a single degree of freedom harmonic oscillator with
viscous damping.
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1. When the roots are real (overdamping)

If  
2

2

c s

m m
  >  

, then the roots k1 and k2 are real but negative. This is a case of overdamping

or large damping and the mass moves slowly to the equilibrium position. This motion is known as
aperiodic. When the roots are real, the most general solution of the differential equation is

       1 2
1 2

k t k tx C e C e= +

         

2 2

2 2 2 2

1 2

c c s c c s
t t

m m m m m m
C e C e

         − + − − − −            = +

Note : In actual practice, the overdamped vibrations are avoided.

2. When the roots are complex conjugate (underdamping)

If 
2

2

s c

m m
 >   

, then the radical (i.e. the term under the square root) becomes negative.

The two roots k1 and k2 are then known as complex conjugate. This is a most practical case of
damping and it is known as underdamping or small damping. The two roots are

      
2

1 2 2

c s c
k i

m m m
 = − + −  

and      
2

2 2 2

c s c
k i

m m m
 = − − −  

where i is a Greek letter known as iota and its value is 1− . For the sake of mathematical calcu-

lations, let

    
2; ( ) ;

2 n
c s

a
m m

= = ω  and 
2

2 2( )
2 d n

s c
a

m m
 − = ω = ω −  

Therefore the two roots may be written as

     1 dk a i= − + ω  ;     and     2 dk a i= − − ω

We know that the general solution of a differential equation is

       1 2 ( ) ( )
1 2 1 2

d da i t a i tk t k tx C e C e C e C e− + ω − − ω= + = +

         .
1 2( )d di t i tate C e C eω − ω−= +    …(Using em + n = em × en) …(iii)

Now according to Euler’s theorem

   cos sinie i+ θ = θ + θ ; and cos sinie i− θ = θ − θ
Therefore the equation (iii) may be written as

       [ ]1 2(cos . sin . ) (cos . sin . )at
d d d dx e C t i t C t i t−= ω + ω + ω − ω

          [ ]1 2 1 2( )cos . ( )sin . )at
d de C C t i C C t−= + ω + − ω

Let            1 2 ,C C A+ =  and 1 2( )i C C B− =
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∴        ( cos . sin . )at
d dx e A t B t−= ω + ω  . . . (iv)

Again, let  cosA C= θ , and sinB C= θ , therefore

       2 2C A B= +  , and    tan
B

A
θ =

Now the equation (iv) becomes

       ( cos cos . sin sin . )at
d dx e C t C t−= θ ω + θ ω

          cos ( . )at
dCe t−= ω − θ . . . (v)

If t is measured from the instant at which the mass m is released after an initial displace-
ment A, then

       cosA C= θ . . . [Substituting x = A and t = 0 in equation (v)]

and            when 0θ = , then A = C
∴     The equation (v) may be written as

      cos .at
dx Ae t−= ω  . . . (vi)

where      
2

2 2– ( )
2d n

s c
a

m m
 ω = = ω −  

 ; and 
2

c
a

m
=

We see from equation (vi), that the motion of the mass is simple harmonic whose circular

damped frequency is dω  and the amplitude is atAe−  which diminishes exponentially with time as
shown in Fig. 23.18. Though the mass eventually returns to its equilibrium position because of its
inertia, yet it overshoots and the oscillations may take some considerable time to die away.

Fig. 23.18. Underdamping or small damping.

We know that the periodic time of vibration,

 
2 2 2

2 2 2

( )

2

p
d n

t
as c

m m

π π π= = =
ω ω − −   

and frequency of damped vibration,

    

2
2 21 1 1

( )
2 2 2 2

d
d n

p

s c
f a

t m m

ω  = = = ω − = − π π π  
 . . . (vii)
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Note : When no damper is provided in the system, then c = 0. Therefore the frequency of the undamped
vibration,

      
1

2n
s

f
m

=
π

. . . [Substituting c = 0, in equation (vii)]

It is the same as discussed under free vibra-
tions.

3. When the roots are equal (critical damping)

If 
2

2

c s

m m
  =  

, then the radical becomes

zero and the two roots k1 and k2 are equal. This is a
case of critical damping. In other words, the critical
damping is said to occur when frequency of damped
vibration (fd) is zero (i.e. motion is aperiodic). This
type of damping is also avoided because the mass
moves back rapidly to its equilibrium position, in
the shortest possible time.

For critical damping, equation (ii) may be
written as

      − −ω= + = +2
1 2 1 2( ) ( ) n

c
t tmx C C e C C e ... 

 
= = ω 

  
∵

2 n
c s

m m

Thus the motion is again aperiodic. The critical damping coefficient (cc) may be obtained
by substituting cc for c in the condition for critical damping, i.e.

          
2

2
cc s

m m
  =  

      or     2 2c n
s

c m m
m

= = ×ω

The critical damping coefficient is the amount of damping required for a system to be
critically damped.

23.14.23.14.23.14.23.14.23.14. Damping Factor or Damping RatioDamping Factor or Damping RatioDamping Factor or Damping RatioDamping Factor or Damping RatioDamping Factor or Damping Ratio
The ratio of the actual damping coefficient (c) to the critical damping coefficient (cc) is

known as damping factor or damping ratio. Mathematically,

Damping factor           
2 .c n

c c

c m
= =

ω
. . . ( 2 . )c nc = π ω∵

The damping factor is the measure of the relative amount of damping in the existing system
with that necessary for the critical damped system.

23.15.23.15.23.15.23.15.23.15. Logarithmic DecrementLogarithmic DecrementLogarithmic DecrementLogarithmic DecrementLogarithmic Decrement
It is defined as the natural logarithm of the amplitude reduction factor. The amplitude

reduction factor is the ratio of any two successive amplitudes on the same side of the mean position.

If x1 and x2 are successive values of the amplitude on the same side of the mean position,

Note : This picture is given as additional information
and is not a direct example of the current chapter.

In a disc brake, hydraulic pressure forces
friction pads to squeeze a metal disc that

rotates on the same axle as the wheel.
Here a disc brake is being tested.
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as shown in Fig. 23.18, then amplitude reduction factor,

    
1

( )
2

p

p

at
at

a t t

x Ae
e

x Ae

−

− += =  = constant

where tp is the period of forced oscillation or the time difference between two consecutive amplitudes.
As per definition, logarithmic decrement,

       
1

2
log log patx

e
x

 
δ = = 

 

or                   1

2 22

2 2
log .

( )
e p

d n

x a
a t a

x a

  π × π
δ = = = × =  ω  ω −

. . . 
2 2( )d n a ω = ω −  

∵

         2
2

2
2

( )
2n

c
m

c

m

× π
=

 ω −  
. . . 

2

c
a

m

 =  
∵

          
2 2

2 22

1 1
2 .n c

n c

c
cm

c c
c

m c

× π × π= =
   

ω − −   ω   

         … ( 2 . )c nc m= ω∵

         2 2

2

( )c

c

c c

π×=
−

In general, amplitude reduction factor,

     
31 2

2 3 4 1
.... patn

n

x xx x
e

x x x x +
= = = = =  = constant

∴      Logarithmic decrement,

      2 21

2
log .

( )

n
e p

n c

x c
a t

x c c+

  π×
δ = = = 

  −

Example 23.9. A vibrating system consists of a mass of 200 kg, a spring of stiffness
80 N/mm and a damper with damping coefficient of 800 N/m/s. Determine the frequency of vibration
of the system.

Solution. Given : m = 200 kg ; s = 80 N/mm = 80 × 103 N/m ; c = 800 N/m/s

We know that circular frequency of undamped vibrations,

     
380 10

200n
s

m

×ω = =  = 20 rad/s
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and circular frequency of damped vibrations,

   2 2 2 2( ) ( ) ( / 2 )d n na c mω = ω − = ω − … ( / 2 )a c m=∵

= 2 2(20) (800 / 2 200) 19.9 rad/s− × =

∴     Frequency of vibration of the system,

/ 2 19.9 / 2d df = ω π = π = 3.17 Hz  Ans.

Example 23.10. The following data are given for a vibratory system with viscous damp-
ing:

Mass = 2.5 kg ; spring constant = 3 N/mm and the amplitude decreases to 0.25 of the
initial value after five consecutive cycles.

Determine the damping coefficient of the damper in the system.

Solution. Given : m = 2.5 kg ; s = 3 N/mm = 3000 N/m ; x6 = 0.25 x1

We know that natural circular frequency of vibration,

                  
3000

2.5
ω = =n

s

m
 = 34.64 rad/s

Let             c = Damping coefficient of the damper in N/m/s,

x1 = Initial amplitude, and

        x6 = Final amplitude after five consecutive cycles = 0.25 x1    …(Given)

We know that

3 51 2 4

2 3 4 5 6

x xx x x

x x x x x
= = = =

or

5
3 51 1 2 4 1

6 2 3 4 5 6 2

x xx x x x x

x x x x x x x

 
= × × × × = 

 

∴

1/ 5 1/ 5
1/ 51 1 1

2 6 1
(4) 1.32

0.25
x x x

x x x

   
= = = =   

  
We know that

1

2 22

2
log

( )
e

n

x
a

x a

  π
= × 

  ω −

2 2

2
log (1.32)

(34.64)
e a

a

π
= ×

−
     or        

2

2
0.2776

1200

a

a

× π=
−

Squaring both sides,

2

2

39.5
0.077

1200

a

a
=

−
                  or      2 292.4 0.077 39.5a a− =

∴         2 2.335a =      or     a = 1.53

We know that     a = c / 2m      or     c = a × 2m =  1.53 × 2 × 2.5 = 7.65 N/m/s  Ans.
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Example 23.11. An instrument vibrates with a frequency of 1 Hz when there is no damping.
When the damping is provided, the frequency of damped vibrations was observed to be 0.9 Hz.
Find 1. the damping factor, and 2. logarithmic decrement.

Solution. Given : fn = 1 Hz ; fd = 0.9 Hz
1.  Damping factor

Let      m = Mass of the instrument in kg,

     c = Damping coefficient

or damping force per unit

velocity in N/m/s, and

     cc= Critical damping coefficient in
N/m/s.

We know that natural circular frequency of undamped vibrations,

     2 2 1 6.284ω = π× = π× =n nf  rad/s

and circular frequency of damped vibrations,

     2 2 0.9 5.66ω = π× = π× =d df  rad/s

We also know that circular frequency of damped vibrations ( ωd ),

   2 2 2 25.66 ( ) (6.284)= ω − = −n a a

Squaring both sides,

(5.66)2 = (6.284)2 – a2 or 32 = 39.5 – a2

∴                  a2 = 7.5           or        a = 2.74

We know that,        a = c/2m        or        c = a × 2m = 2.74 × 2m = 5.48 m N/m/s

and      2 . 2 6.284= ω = ×c nc m m  = 12.568 m N/m/s

∴     Damping factor,

 / 5.48 /12.568=cc c m m  = 0.436 Ans.

2.  Logarithmic decrement

We know that logarithmic decrement,

       
2 2 2 2

2 2 5.48 34.4

11.3( ) (12.568 ) (5.48 )

π π×δ = = =
− −c

c m

c c m m
 = 3.04  Ans.

Example 23.12. The measurements on a mechanical vibrating system show that it has a
mass of 8 kg and that the springs can be combined to give an equivalent spring of stiffness
5.4 N/mm. If the vibrating system have a dashpot attached which exerts a force of 40 N when the
mass has a velocity of 1 m/s, find : 1. critical damping coefficient, 2. damping factor, 3. logarithmic
decrement, and 4. ratio of two consecutive amplitudes.

Solution. Given : m = 8 kg ; s = 5.4 N/mm = 5400 N/m

Since the force exerted by dashpot is 40 N, and the mass has a velocity of 1 m/s , therefore

Damping coefficient (actual),

       c = 40 N/m/s

Guitar
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1. Critical damping coefficient

We know that critical damping coefficient,

     
5400

2 . 2 2 8
8c n

s
c m m

m
= ω = × = ×  = 416 N/m/s Ans.

2. Damping factor

We know that damping factor

         
40

416
= =

c

c

c
 = 0.096 Ans.

3. Logarithmic decrement

We know that logarithmic decrement,

     
2 2 2 2

2 2 40

( ) (416) (40)

π π×δ = =
− −c

c

c c
 = 0.6 Ans.

4. Ratio of two consecutive amplitudes

Let     xn and xn+1 = Magnitude of two consecutive amplitudes,

We know that logarithmic decrement,

      
1

log
+

 
δ =  

 
n

e
n

x

x
 or 0.6

1
(2.7)δ

+
= =n

n

x
e

x
 = 1.82 Ans.

Example 23.13. A mass suspended from a helical
spring vibrates in a viscous fluid medium whose resistance
varies directly with the speed. It is observed that the frequency
of damped vibration is 90 per minute and that the amplitude
decreases to 20 % of its initial value in one complete vibration.
Find the frequency of the free undamped vibration of the
system.

Solution. Given : fd = 90/min = 90/60 = 1.5 Hz

We know that time period,
     tp = 1/fd =  1/1.5 = 0.67 s

Let       x1 = Initial amplitude, and

      x2 = Final amplitude after one
  complete vibration

= 20% x1 = 0.2 x1

 . . . (Given)

We know that

       1

2
log .

 
= 

 
e p

x
a t

x
    or   1

1
log 0.67

0.2

 
= × 

 
e

x
a

x

∴                       loge 5 = 0.67 a  or   1.61 = 0.67 a or  a = 2.4 . . . (∵  loge 5 = 1.61)

Helical spring suspension of a
two-wheeler.

Note : This picture is given as
additional information and is not a

direct example of the current chapter.
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We also know that frequency of free damped vibration,

     
2 21

( )
2

= ω −
πd nf a

or                         2 2 2( ) (2 )ω = π× +n df a . . . (By squaring and arranging)

          2 2(2 1.5) (2.4) 94.6= π× + =

∴                   9.726ω =n  rad/s

We know that frequency of undamped vibration,

     
9.726

2 2

ω
= =

π π
n

nf  = 1.55 Hz Ans.

Example 23.14. A coil of spring stiffness 4 N/mm supports vertically a mass of 20 kg at
the free end. The motion is resisted by the oil dashpot. It is found that the amplitude at the beginning
of the fourth cycle is 0.8 times the amplitude of the previous vibration. Determine the damping
force per unit velocity. Also find the ratio of the frequency of damped and undamped vibrations.

Solution. Given : s = 4 N/mm = 4000 N/m ; m = 20 kg

Damping force per unit velocity
Let         c = Damping force in newtons per unit velocity i.e. in N/m/s

       xn = Amplitude at the beginning of the third cycle,

    xn+1 = Amplitude at the beginning of the fourth cycle = 0.8 xn

. . . (Given)

We know that natural circular frequency of motion,

      4000
14.14

20
ω = = =n

s

m
 rad/s

and     
2 2

2
log

1 ( )

  π
= × +  ω −

n
e

n n

x
a

x a

or
2 2

2
log

0.8 (14.14)

  π= × 
  −

n
e

n

x
a

x a

         
2

2
log 1.25

200

π= ×
−

e a
a

    or    
2

2
0.223

200

π= ×
−

a
a

Squaring both sides

   
2 2 2

2 2

4 39.5
0.05

200 200

× π= =
− −

a a

a a

      0.05 × 200 – 0.05 a2 = 39.5a2               or      39.55 a2 = 10

∴ a2 = 10 / 39.55 = 0.25   or      a = 0.5

We know that        a = c / 2m

∴ c = a × 2m = 0.5 ×2 × 20 = 20 N/m/s Ans.

Ratio of the frequencies

Let      1nf  = Frequency of damped vibrations = 
2

dω
π
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    2nf  = Frequency of undamped vibrations = 
2

nω
π

∴

                                      
2 2 2 2

1

2

( )2 (14.14) (0.5)

2 14.14
n d d n

n n n n

f a

f

ω ω ω −π −= × = = =
π ω ω ω

. . . ( )2 2( )d n aω = ω −∵

          = 0.999 Ans.

Example 23.15. A machine of mass 75 kg is mounted on springs and is fitted with a
dashpot to damp out vibrations. There are three springs each of stiffness 10 N/mm and it is found
that the amplitude of vibration diminishes from 38.4 mm to 6.4 mm in two complete oscillations.
Assuming that the damping force varies as the velocity, determine : 1. the resistance of the dash-
pot at unit velocity ; 2. the ratio of the frequency of the damped vibration to the frequency of the
undamped vibration ; and 3. the periodic time of the damped vibration.

Solution. Given : m = 75 kg ; s = 10 N/mm = 10 ×103 N/m ; x1 = 38.4 mm = 0.0384 m ;
x3 = 6.4 mm = 0.0064 m

Since the stiffness of each spring is 10 × 103 N/m and there are 3 springs, therefore total
stiffness,

       3 33 10 10 30 10s = × × = ×  N/m

We know that natural circular frequency of motion,

     
330 10

20
75n

s

m

×ω = = =  rad/s

1. Resistance of the dashpot at unit velocity

Let         c =  Resistance of the dashpot in newtons at unit velocity i.e. in

  N/m/s,

       x2 = Amplitude after one complete oscillation in metres, and

       x3 = Amplitude after two complete oscillations in metres.

We know that      
1 2

2 3

x x

x x
=

∴
2

1 1

2 3

x x

x x

 
= 

 
. . . 

2
1 1 2 1 1 1

3 2 3 2 2 2

x x x x x x

x x x x x x

   = × = × =    
∵

or      

1/ 2 1/ 2
1 1

2 3

0.0384
2.45

0.0064
x x

x x

   = = =     

We also know that

       
1

2 22

2
log

( )
e

n

x
a

x a

  π
= × 

  ω −
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       2 2

2
log 2.45

(20)
e a

a

π
= ×

−

2

2
0.8951

400

a

a

× π=
−

  or   
2

2

39.5
0.8

400

a

a

×=
−

 . . . (Squaring both sides)

∴     a2 = 7.94      or    a = 2.8

We know that      a = c / 2m

∴ c = a × 2m = 2.8 × 2 × 75 = 420 N/m/s Ans.

2. Ratio of the frequency of the damped vibration to the frequency of undamped vibration

Let    1nf  = Frequency of damped vibration = 
2

dω
π

  2nf  = Frequency of undamped vibration = 
2

nω
π

∴    
2 2 2 2

1

2

( ) (20) (2.8)2

2 20
nn d d

n n n n

af

f

ω − −ω ωπ= × = = =
π ω ω ω

 = 0.99 Ans.

3. Periodic time of damped vibration

We know that periodic time of damped vibration

        
2 2 2 2

2 2 2

( ) (20) (2.8)d n a

π π π= = =
ω ω − −

 = 0.32 s Ans.

Example 23.16. The mass of a single degree damped vibrating system is 7.5 kg and makes
24 free oscillations in 14 seconds when disturbed from its equilibrium position. The amplitude of
vibration reduces to 0.25 of its initial value after five oscillations. Determine : 1. stiffness of the
spring, 2. logarithmic decrement, and 3. damping factor, i.e. the ratio of the system damping to
critical damping.

Solution. Given : m = 7.5 kg

Since 24 oscillations are made in 14 seconds, therefore frequency of free vibrations,

   fn = 24/14 = 1.7

and   2 2 1.7 10.7n nfω = π× = π× =  rad/s

1. Stiffness of the spring

Let       s =  Stiffness of the spring in N/m.

We know that      2( ) /n s mω =  or 2 2( ) (10.7) 7.5ns m= ω =  = 860 N/m Ans.

2. Logarithmic decrement

Let      x1 =  Initial amplitude,

x6 = Final amplitude after five oscillations = 0.25 x1 ... (Given)

∴          

5
3 51 1 2 4 1

6 2 3 4 5 6 2

x xx x x x x

x x x x x x x

 
= × × × × = 

 
1 2 3 4 5

2 3 4 5 6

x x x x x

x x x x x

 
= = = = 

 
… ∵
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or      
1/ 5 1/ 5

1/ 51 1 1

2 6 1
(4) 1.32

0.25
x x x

x x x

   
= = = =   

  
We know that logarithmic decrement,

    1

2
log log 1.32e e

x

x

 
δ = = 

 
 = 0.28 Ans.

3. Damping factor

Let         c = Damping coefficient for the actual system, and

       cc = Damping coefficient for the critical damped system.

We know that logarithmic decrement ( δ ),

 2 2 2 2

2 2
0.28

( ) (10.7)n

a a

a a

× π × π= =
ω − −

2

2

39.5
0.0784

114.5

a

a

×=
−

 . . . (Squaring both sides)

         8.977 – 0.0784 a2 = 39.5 a2     or       a2 = 0.227     or    a = 0.476

We know that             a = c / 2m         or    c = a × 2m = 0.476 × 2 × 7.5 = 7.2 N/m/s Ans.

and       2 . 2 7.5 10.7c nc m= ω = × ×  = 160.5 N/m/s Ans.

∴              Damping factor = c/cc = 7.2 / 160.5 = 0.045 Ans.

23.16.23.16.23.16.23.16.23.16. Frequency of Under Damped Forced VibrationsFrequency of Under Damped Forced VibrationsFrequency of Under Damped Forced VibrationsFrequency of Under Damped Forced VibrationsFrequency of Under Damped Forced Vibrations

Consider a system consisting of spring, mass and
damper as shown in Fig. 23.19. Let the system is acted
upon by an external periodic (i.e. simple harmonic)
disturbing force,

      cos .xF F t= ω

where                     F = Static force, and

                   ω= Angular velocity of

     the periodic disturbing

   force.

When the system is constrained to move in vertical
guides, it has only one degree of freedom. Let at sometime
t, the mass is displaced downwards through a distance x
from its mean position.

Using the symbols as discussed in the previous article, the equation of motion may be
written as

2

2
. cos .

d x dx
m c s x F t

dtdt
× = − × − + ω

or    
2

2
. cos .

d x dx
m c s x F t

dtdt
× + × + = ω . . . (i)

Fig. 23.19. Frequency of under
damped forced vibrations.
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This equation of motion may be solved either by differential equation method or by graphi-
cal method as discussed below :

1. Differential equation method

The equation (i) is a differential equation of the second degree whose right hand side is
some function in t. The solution of such type of differential equation consists of two parts ; one
part is the complementary function and the second is particular integral. Therefore the solution
may be written as

        x = x1 + x2

where         x1 = Complementary function, and

      x2 = Particular integral.

The complementary function is same as discussed in the previous article, i.e.

     1 cos ( )at
dx Ce t−= ω − θ  . . . (ii)

where C and θ are constants. Let us now find the value of particular integral as discussed below :

Let the particular integral of equation (i) is given by

      2 1 2sin . cos .x B t B t= ω + ω   . . . (where B1 and B2 are constants)

∴ 1 2. cos . . sin .
dx

B t B t
dt

= ω ω − ω ω

and   
2

2 2
1 22
. sin . . cos .

d x
B t B t

dt
= − ω ω − ω ω

Substituting these values in the given differential equation (i), we get

    2 2
1 2 1 2 1 2( . sin . . cos . ) ( . cos . . sin . ) ( sin . cos . )m B t B t c B t B t s B t B t− ω ω − ω ω + ω ω − ω ω + ω + ω

          cos .F t= ω

or 2 2
1 2 1 2 1 2( . . . . . )sin . ( . . . . . ) cos .m B c B s B t m B c B s B t− ω − ω + ω + − ω + ω + ω

          cos .F t= ω

or 2 2
1 2 1 2( . ) . . sin . . . ( . ) cos .s m B c B t c B s m B t   − ω − ω ω + ω + − ω ω   

          cos . 0sin .F t t= ω + ω
Comparing the coefficients of sin ωt and cos ωt on the left hand side and right hand side

separately, we get

    2
1 2( . ) . . 0s m B c B− ω − ω = . . . (iii)

and    2
1 2. . ( . )c B s m B Fω + − ω =  . . . (iv)

Now from equation (iii)

    2
1 2( . ) . .s m B c B− ω = ω

∴
2

2 1
.

.
s m

B B
c

− ω= ×
ω

. . . (v)

Substituting the value of B2 in equation (iv)
2 2

1 1
( . ) ( . )

. .
.

s m s m
c B B F

c

− ω − ωω + × =
ω
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2 2 2 2
1 1. . ( . ) . .c B s m B c Fω + − ω = ω

2 2 2 2
1 . ( . ) . .B c s m c F ω + − ω = ω 

∴       1 2 2 2 2

. .

. ( . )

c F
B

c s m

ω=
ω + − ω

and                
2

2 2 2 2 2

. . .

. . ( . )

s m c F
B

c c s m

− ω ω= ×
ω ω + − ω

 . . . [From equation (v)]

          
2

2 2 2 2

( . )

. ( . )

F s m

c s m

− ω=
ω + − ω

∴      The particular integral of the differential equation (i) is

      2 1 2sin . cos .x B t B t= ω + ω

          
2

2 2 2 2 2 2 2 2

. . ( . )
sin . cos .

. ( . ) . ( . )

c F F s m
t t

c s m c s m

ω − ω= × ω + × ω
ω + − ω ω + − ω

          
2

2 2 2 2
. sin . ( . ) cos .

. ( . )

F
c t s m t

c s m
 = ω ω + − ω ω ω + − ω . . . (vi)

Let      . sin ;c Xω = φ  and 2. coss m X− ω = φ

∴ 2 2 2 2. ( . )X c s m= ω + − ω . . . (By squaring and adding)

Note : This picture is given as additional information and is not a direct example of the current chapter.

This machine performs pressing operation, welding operation and material handling.
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and    
2

.
tan

.

c

s m

ωφ =
− ω

       or       1
2

.
tan

.

c

s m

− ω φ =  
− ω 

Now the equation (vi) may be written as

       [ ]2 2 2 2 2
sin .sin cos cos

. ( . )

F
x X t X t

c s m
= φ ω + φ ω

ω + − ω

           2 2 2 2

.
cos ( . )

. ( . )

F X
t

c s m
= × ω − φ

ω + − ω

                                  
2 2 2 2

2 2 2 2

. ( . )
cos ( . )

. ( . )

F c s m
t

c s m

ω + − ω
= × ω − φ

ω + − ω

               2 2 2 2
cos ( . )

. ( . )

F
t

c s m
= × ω − φ

ω + − ω

∴      The complete solution of the differential equation (i) becomes
                                x = x1 + x2

                     2 2 2 2
. cos ( . ) cos( . )

. ( . )

at
d

F
C e t t

c s m

−= ω − θ + × ω − φ
ω + − ω

In actual practice, the value of the complementary function x1 at any time t is much smaller
as compared to particular integral x2. Therefore, the displacement x, at any time t, is given by the
particular integral x2 only.

∴                     
2 2 2 2

cos ( . )
. ( . )

F
x t

c s m
= × ω − φ

ω + − ω
... (vii)

This equation shows that motion is simple harmonic whose circular frequency is ω and the

amplitude is 
2 2 2 2. ( . )

F

c s mω + − ω
.

A little consideration will show that the frequency of forced vibration is equal to the angular
velocity of the periodic force and the amplitude of the forced vibration is equal to the maximum
displacement of vibration.

∴      Maximum displacement or the amplitude of forced vibration,

                           2 2 2 2. ( . )
max

F
x

c s m
=

ω + − ω  . . . (viii)

Notes : 1. The equations (vii) and (viii) hold good when steady vibrations of constant amplitude takes
place.

           2. The equation (viii) may be written as

                          
2 2 2 2

2 2

/

. ( . )
max

F s
x

c s m

s s

=
ω − ω+

. . . (Dividing the numerator and denominator by s)
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22 2 2

2
. .

1

ox

c m

ss

=
 ω ω + −  

 . . . (Substituting F/s = xo)

where xo is the deflection of the system under the static force F. We know that the natural frequency of free
vibrations is given by

 2( ) /n s mω =

∴       
22 2 2

2 2
.

1
( )

o
max

n

x
x

c

s

=
 ω ω + − ω 

. . . (ix)

3. When damping is negligible, then c = 0.

∴                      

2

2 2 2 2 2

2

( ) /

( ) ( )
1

( )

o o n o
max

n n

n

x x x s m
x

ω ×= = =
ω ω − ω ω − ω−
ω

         . . . 
2( ) /n s m ω =  ∵

∴  2 2( )n

F

m
=

 ω − ω  
 . . . ( ).oF x s=∵  . . . (x)

4. At resonance nω = ω . Therefore the angular speed at which the resonance occurs is

 n
s

m
ω = ω =  rad/s

and         
.max o

n

s
x x

c
= ×

ω
 . . . [From equation (ix)]

2. Graphical method

The solution of the equation of motion for a forced and damped vibration may be easily
obtained by graphical method as discussed below :

Let us assume that the displacement of the mass (m) in the system, as shown in Fig. 23.19,
under the action of the applied simple harmonic force F cos .tω  is itself simple harmonic, so that
it can be represented by the equation,

  cos( )x A t= ω − φ

where A is the amplitude of vibration.

Now differentiating the above equation,

[ ]. sin ( . ) . cos 90 ( . )
dx

A t A t
dt

= −ω ω − φ = ω ° + ω − φ

and [ ]
2

2 2
2

. cos ( . ) . cos 180 ( . )
d x

A t A t
dt

= −ω ω − φ = ω ° + ω − φ
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∴      Elastic force i.e. the force required to extend the spring

          . . cos ( . )s x s A t= = ω − φ
Disturbing force i.e. the force required to overcome the resistance of dashpot

          [ ]. . cos 90 ( . )
dx

c c A t
dt

= × = ω ° + ω − φ

and inertia force i.e. the force required to accelerate the mass m

          [ ]
2

2
2

. . cos 180 ( . )
d x

m m A t
dt

= × = ω ° + ω − φ

Fig. 23.20. Graphical method.

The algebraic sum of these three forces at any given instant must be equal to the applied
force cosF tω . These forces are represented graphically in Fig. 23.20 (a). The vector OP repre-
sents, to some suitable scale, the elastic force (of maximum value s.A), at an inclination ( . )tω − φ
to the vertical. The vector OQ (of maximum value .c Aω ) and vector OR (of maximum value

2.m Aω ) represents, to the same scale, the disturbing force and inertia force respectively. The vec-
tors OP, OQ and OR are at successive intervals of 90°.

The projected lengths Op, Oq and Or represent the instantaneous values of these forces at
time t and Os (the algebraic sum of Op, Oq and Or) must represent the value F cos .tω of the
applied force at the same instant. Thus the force vector OS must be the vector sum of OP, OQ and

OR or force F must be the vector sum of s.A, . .c Aω  and 2. .m Aω , as shown in Fig. 23.20 (b). From
the geometry of the figure,

      2 2 2 2( ) ( ) ( ) ( )F oc od cd oa ad cd= = + = − +

          2 2 2 2 2 2 2( . . . ) ( . . ) ( . ) .s A m A c A A s m c= − ω + ω = − ω + ω

∴                 
2 2 2 2

(or )
( . ) .

max
F

A x
s m c

=
− ω + ω

. . . (Same as before)

and    
2

2 2

. . .
tan

. . . .

cd c A c

od s A m A s m

ω ωφ = = =
− ω − ω

. . . (Same as before)

(a) (b)
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23.17. Magnification Factor or Dynamic Magnifier23.17. Magnification Factor or Dynamic Magnifier23.17. Magnification Factor or Dynamic Magnifier23.17. Magnification Factor or Dynamic Magnifier23.17. Magnification Factor or Dynamic Magnifier
It is the ratio of maximum displacement of the forced vibration (xmax ) to the deflection

due to the static force F(xo). We have proved in the previous article that the maximum displace-
ment or the amplitude of forced vibration,

   
22 2 2

2 2

.
1

( )

o
max

n

x
x

c

s

=
 ω ω+ −  ω 

    Fig. 23.21. Relationship between magnification factor and phase angle for different values of / nω ω .

∴     Magnification factor or dynamic magnifier,

       
22 2 2

2 2

1

.
1

( )

max

o

n

x
D

x
c

s

= =
 ω ω+ −  ω 

... (i)

          
22 2

2

1

2 .
1

. ( )c n n

c

c

=
  ω ω+ −     ω ω   

. . . 2
. 2 . 2 . 2 .

.2 ( )2 c nn

c c c c
ss cmm
m

 
 ω ω ω ω= = = ωω ×  

∵
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The magnification factor or dynamic magnifier gives the factor by which the static deflection
produced by a force F (i.e. xo) must be multiplied in order to obtain the maximum amplitude of the
forced vibration (i.e. xmax) by the harmonic force F cos .ωt

∴ max ox x D= ×

Fig. 23.21 shows the relationship between the magnification factor (D) and phase angle φ

for different value of /ω ωn  and for values of damping factor c/cc = 0.1, 0.2 and 0.5.

Notes: 1. If there is no damping (i.e. if the vibration is undamped), then c = 0. In that case, magnification
factor,

      

2

2 222

2

1 ( )

( )
1

( )

max n

o n

n

x
D

x

ω= = =
ω − ω ω−  ω 

2. At resonance, nω = ω . Therefore magnification factor,

      .
max

o n

x s
D

x c
= =

ω

Example 23.17. A single cylinder vertical petrol engine of total mass 300 kg is mounted
upon a steel chassis frame and causes a vertical static deflection of 2 mm. The reciprocating parts
of the engine has a mass of 20 kg and move through a vertical stroke of 150 mm with simple
harmonic motion. A dashpot is provided whose damping resistance is directly proportional to the
velocity and amounts to 1.5 kN per metre per second.

Considering that the steady state of vibration is reached ; determine : 1. the amplitude of
forced vibrations, when the driving shaft of the engine rotates at 480 r.p.m., and 2. the speed of the
driving shaft at which resonance will occur.

Solution : Given. m = 300 kg; δ  = 2 mm = 2 × 10–3 m ; m1 = 20 kg ; l = 150 mm

= 0.15 m ; c = 1.5 kN/m/s = 1500 N/m/s ; N = 480 r.p.m. or 2 480 / 60ω = π×  = 50.3 rad/s

Depending upon the case bridges can be treated as beams subjected to
uniformly distributed leads and point loads.
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1. Amplitude of the forced vibrations

We know that stiffness of the frame,

       s = m.g / δ  = 300 × 9.81/2 × 10–3 = 1.47 × 106 N/m

Since the length of stroke ( l ) = 150 mm = 0.15 m, therefore radius of crank,

        r = l / 2 = 0.15 / 2 = 0.075 m

We know that the centrifugal force due to the reciprocating parts or the static force,

     2
1. .= ωF m r  = 20 (50.3)2 0.075 = 3795 N

∴     Amplitude of the forced vibration (maximum),

   2 2 2 2. ( . )
max

F
x

c s m
=

ω + − ω

          2 2 6 2 2

3795

(1500) (50.3) [1.47 10 300(50.3) ]
=

+ × −

          
3

39 9

3795 3795
5.3 10

710 105.7 10 500 10

−= = = ×
×× + ×

 m

           = 5.3 mm Ans.

2. Speed of the driving shaft at which the resonance occurs

Let         N = Speed of the driving shaft at which the resonance occurs in
 r.p.m.

We know that the angular speed at which the resonance occurs,

       
61.47 10

70
300

×ω = ω = = =n
s

m
 rad/s

∴                  60 / 2 70 60 / 2= ω× π = × πN  = 668.4 r.p.m. Ans.

Example 23.18. A mass of 10 kg is suspended from one end of a helical spring, the other
end being fixed. The stiffness of the spring is 10 N/mm. The viscous damping causes the amplitude
to decrease to one-tenth of the initial value in four complete oscillations. If a periodic force of
150 cos 50 t N is applied at the mass in the vertical direction, find the amplitude of the forced
vibrations. What is its value of resonance ?

Solution.  Given :  m = 10 kg ; s = 10 N/mm = 10 × 103 N/m ; 1
5 10

x
x =

Since the periodic force, cos . 150cos50xF F t t= ω = , therefore

Static force,        F = 150 N

and angular velocity of the periodic disturbing force,

       50ω = rad/s

We know that angular speed or natural circular frequency of free vibrations,

    
310 10

10

×ω = =n
s

m
 = 31.6 rad/s
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Amplitude of the forced vibrations

Since the amplitude decreases to 1/10th of the initial value in four complete oscillations,
therefore, the ratio of initial  amplitude (x1) to the final amplitude after four complete oscillations
(x5) is given by

                             

4
31 1 2 4 1

5 2 3 4 5 2

 
= × × × = 

 

xx x x x x

x x x x x x
        . . . 

1 2 3 4

2 3 4 5

x x x x

x x x x

 
= = = 

 
∵

∴                   

1/ 4 1/ 4
1/ 41 1 1

2 5 1

(10) 1.78
/10

x x x

x x x

   
= = = =   

  
. . . 1

5 10

x
x

 =  

We know that

        
1

2 22

2
log

( )

  π
= × 

  ω −
e

n

x
a

x a

          
2 2

2
log 1.78

(31.6)

π= ×
−

e a
a

 or 
2

2
0.576

1000

× π=
−

a

a

Squaring both sides and rearranging,

         39.832 a2 = 332     or    a2 = 8.335    or     a = 2.887

We know that           a = c/2m   or     c = a × 2m = 2.887 × 2 × 10 = 57.74 N/m/s
and deflection of the system produced by the static force F,

       xo = F/s = 150/10 × 103 = 0.015 m
We know that amplitude of the forced vibrations,

  
22 2 2

2 2

.
1

( )

o
max

n

x
x

c

s

=
 ω ω+ − 

ω  

           
222 2

3 2

0.015 0.015

0.083 2.25
(57.74) (50) 50

1
31.6(10 10 )

= =
+  + −   ×   

           30.015
9.8 10

1.53
−= = ×  m = 9.8 mm Ans.

Amplitude of forced vibrations at resonance

We know that amplitude of forced vibrations at resonance,

    
3

0
10 10

0.015 0.0822
. 57.54 31.6max

n

s
x x

c

×= × = × =
ω ×  m = 82.2 mm Ans.

Example 23.19. A body of mass 20 kg is suspended from a spring which deflects 15 mm
under this load. Calculate the frequency of free vibrations and verify that a viscous damping force
amounting to approximately 1000 N at a speed of 1 m/s is just-sufficient to make the motion
aperiodic.
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If when damped to this extent, the body is subjected to a disturbing force with a maximum

value of 125 N making 8 cycles/s, find the amplitude of the ultimate motion.

Solution . Given : m = 20 kg ; δ   = 15 mm = 0.015 m ; c = 1000 N/m/s ; F = 125 N ;
f = 8 cycles/s

Frequency of free vibrations

We know that frequency of free vibrations,

      
1 1 9.81

2 2 0.015
= =

π δ πn
g

f  = 4.07 Hz Ans.

The critical damping to make the motion aperiodic is such that damped frequency is zero,
i.e.

 
2

2
  =  

c s

m m

∴          2 .
4 4 . 4= × = = × ×

δ
s m g

c m s m m
m

. . . 
.m g

s
 = δ 
∵

          20 9.81
4 20 1023

0.015

×= × × =  N/m/s

This means that the viscous damping force is 1023 N at a speed of 1 m/s. Therefore a
viscous damping force amounting to approximately 1000 N at a speed of 1 m/s is just sufficient to
make the motion aperiodic. Ans.

Amplitude of ultimate motion

We know that angular speed of forced vibration,

       2 2 8 50.3ω = π× = π× =f  rad/s

and stiffness of the spring,      s = m.g/ δ  =  20 × 9.81 / 0.015 = 13.1 × 103 N/m

∴      Amplitude of ultimate motion i.e. maximum amplitude of forced vibration,

  2 2 2 2. ( . )
max

F
x

c s m
=

ω + − ω

          2 2 3 2 2

125

(1023) (50.3) [13.1 10 20(50.3) ]
=

+ × −

          36 6

125 125

63.7 102600 10 1406 10
= =

×× + ×
 = 1.96 × 10–3 m

           = 1.96 mm Ans.
Example 23.20. A machine part of mass 2 kg vibrates in a viscous medium. Determine the

damping coefficient when a harmonic exciting force of 25 N results in a resonant amplitude of
12.5 mm with a period of 0.2 second. If the system is excited by a harmonic force of frequency
4 Hz what will be the percentage increase in the amplitude of vibration when damper is removed
as compared with that with damping.

Solution . Given : m = 2 kg ; F = 25 N ; Resonant xmax = 12.5 mm = 0.0125 m ;
tp = 0.2 s ; f = 4 Hz
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Damping coefficient

Let         c = Damping coefficient in N/m/s.

We know that natural circular frequency of the exicting force,

    2 / 2 / 0.2ω = π = πn pt  = 31.42 rad/s

We also know that the maximum amplitude of vibration at resonance (xmax ),

25 0.796
0.0125

. 31.42
= = =

ω ×n

F

c c c
 or c = 63.7 N/m/s Ans.

Percentage increase in amplitude

Since the system is excited by a harmonic force of frequency ( f ) = 4 Hz, therefore corre-
sponding circular frequency

       2 2 4 25.14ω = π× = π× =f  rad/s

We know that maximum amplitude of vibration with damping,

 2 2 2 2. ( . )
max

F
x

c s m
=

ω + − ω

         2 2 2 2 2

25

(63.7) (25.14) [2(31.42) 2 (25.14) ]
=

+ −

. . . 2 2( ) / or ( )n ns m s m ω = = ω ∵

          
6 6

25 25
0.0143

17492.56 10 0.5 10
= = =

× + ×
 m = 14.3 mm

and the maximum amplitude of vibration when damper is removed,

 
2 22 2

25 25

7102[(31.42) (25.14) ]( )
max

n

F
x

m
= = =

  −ω − ω 
 = 0.0352 m

          = 35.2 mm

∴     Percentage increase in amplitude

          
35.2 14.3

14.3

−=  = 1.46    or    146% Ans.

Example 23.21. The time of free vibration of a mass hung from the end of a helical spring
is 0.8 second. When the mass is stationary, the upper end is made to move upwards with a
displacement y metre such that y = 0.018 sin 2 πt, where t is the time in seconds measured from
the beginning of the motion. Neglecting the mass of the spring and any damping effects, determine
the vertical distance through which the mass is moved in the first 0.3 second.

Solution. Given : tp = 0.8 s ; y = 0.018 sin 2 πt

Let        m =  Mass hung to the spring in kg, and

        s = Stiffness of the spring in N/m.

We know that time period of free vibrations (tp),

     0.8 2
m

s
= π         or      

20.8
0.0162

2
 = = π 

m

s
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If x metres is the upward displacement of mass m from its equilibrium position after time t

seconds, the equation of motion is given by

          
2

2
( )× = −d x

m s y x
dt

      or      
2

2
0.018sin 2× + = = πm d x

x y t
s dt

The solution of this differential equation is

       
2

0.018sin 2
sin cos

2
1

/

π
= × + × +

π −  
 

s s t
x A t B t

m m

s m

 . . . (where A and B are constants)

          2

0.018sin 2
sin cos

0.0162 0.0162 1 4 0.0162

t t t
A B

π= + +
− π ×

          sin 7.85 cos7.85 0.05sin 2= + + πA t B t t  . . . (i)

Now when     t = 0, x = 0, then from equation (i), B = 0.

Again when   t = 0, dx/dt = 0.

Therefore differentiating equation (i) and equating to zero, we have

 / 7.85 cos7.85 0.05 2 cos 2 0= + × π π =dx dt A t t . . . (∵    B = 0 )

or             7.85 cos7.85 0.05 2 cos2A t t= − × π π

∴                   0.05 2 / 7.85 0.04A = − × π = − . . . (∵    t = 0 )

Now the equation (i) becomes

      0.04sin 7.85 0.05sin 2x t t= − + π . . . (∵    B = 0)  . . . (ii)

∴   Vertical distance through which the mass is moved in the first 0.3 second (i.e.
when t = 0.3 s),

         0.04sin (7.85 0.3) 0.05sin (2 0.3)= − × + π×

 . . . [ Substituting t = 0.3 in equation (ii)]

          0.04 0.708 0.05 0.951 0.0283 0.0476 0.0193= − × + × = − + =  m

         =  19.3 mm Ans.

23.18.23.18.23.18.23.18.23.18. Vibration Isolation and Transmissibility Vibration Isolation and Transmissibility Vibration Isolation and Transmissibility Vibration Isolation and Transmissibility Vibration Isolation and Transmissibility
A little consideration will show that when an

unbalanced machine is installed on the foundation, it produces
vibration in the foundation. In order to prevent these vibrations
or to minimise the transmission of forces to the foundation,
the machines are mounted on springs and dampers or on some
vibration isolating material, as shown in Fig. 23.22. The
arrangement is assumed to have one degree of freedom, i.e. it
can move up and down only.

It may be noted that when a periodic (i.e. simple
harmonic) disturbing force F cos ωt is applied to a machine

Fig. 23.22. Vibration isolation.
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of mass m supported by a spring of stiffness s, then the force is transmitted by means of the spring
and the damper or dashpot to the fixed support or foundation.

The ratio of the force transmitted (FT) to the force applied (F) is known as the isolation
factor or transmissibility ratio of the spring support.

We have discussed above that the force transmitted to the foundation consists of the fol-
lowing two forces :

1. Spring force or elastic force which is equal to s. xmax, and

2. Damping force which is equal to c. ω.xmax.

Since these two forces are perpendicular to one another, as shown in Fig.23.23, therefore
the force transmitted,

     2 2
T ( . ) ( . . )max maxF s x c x= + ω

          2 2 2.maxx s c= + ω
∴     Transmissibility ratio,

        
2 2 2

T .maxx s cF

F F

+ ωε = =

We know that

  max o
F

x x D D
s

= × = × . . . o
F

x
s

 =  
∵

∴
2 2

2 2 2
2

.
. 1

ωε = + ω = +D c
s c D

s s

          

2
2

1
c n

c
D

c

 ω= + × ω 
. . . 

. 2

c n

c c

s c

 ω ω= × ω 
∵

We have seen in Art. 23.17 that the magnification factor,

      
22 2

2

1

2 .
1

. ( )

=
  ω ω+ −    ω ω   c n n

D

c

c

∴

2

22 2

2

2 .
1

.

2 .
1

. ( )

 ω+ ω ε =
  ω ω+ −    ω ω   

c n

c n n

c

c

c

c

. . . (i)

When the damper is not provided, then c = 0, and

        2

1

1 ( / )
ε =

− ω ωn
 . . . (ii)

Fig. 23.23
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From above, we see that when / 1,ω ω > εn  is negative. This means that there is a phase

difference of 180° between the transmitted force and the disturbing force ( cos . )ωF t . The value of

/ω ωn  must be greater than 2  if ε  is to be less than 1 and it is the numerical value of ε ,

independent of any phase difference between the forces that may exist which is important. It is
therefore more convenient to use equation (ii) in the following form, i.e.

        2

1

( / ) 1
ε =

ω ω −n
 . . . (iii)

Fig. 23.24 is the graph for different values of damping factor c/cc to show the variation of

transmissibility ratio ( ε ) against the ratio /ω ωn .

1. When / 2ω ω =n , then all the curves pass through the point ε  = 1 for all values of

damping factor c/cc .

Fig. 23.24. Graph showing the variation of transmissibility ratio.

2. When / 2ω ω <n , then ε  > 1 for all values of damping factor c/cc. This means that the

force transmitted to the foundation through elastic support is greater than the force applied.

3. When / 2ω ω >n  , then ε  < 1 for all values of damping factor c/cc. This shows that

the force transmitted through elastic support is less than the applied force. Thus vibration isolation

is possible only in the range of / 2ω ω >n  .
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We also see from the curves in Fig. 23.24 that the damping is detrimental beyond

/ 2ω ω >n  and advantageous only in the region / 2ω ω <n . It is thus concluded that for the

vibration isolation, dampers need not to be provided but in order to limit resonance amplitude,
stops may be provided.

Example 23.22. The mass of an electric motor is 120 kg and it runs at 1500 r.p.m. The
armature mass is 35 kg and its C.G. lies 0.5 mm from the axis of rotation.  The motor is mounted
on five springs of negligible damping so that the force transmitted is one-eleventh of the impressed
force. Assume that the mass of the motor is equally distributed among the five springs.

Determine : 1. stiffness of each spring; 2. dynamic force transmitted to the base at the
operating speed; and 3. natural frequency of the system.

Solution. Given m1 = 120 kg ;  m2 = 35 kg;   r = 0.5 mm = 5 × 10–4 m;  ε = 1 / 11;
N = 1500 r.p.m.  or  ω = 2π × 1500 / 60 = 157.1 rad/s ;

1. Stiffness of each spring

Let                   s = Combined stiffness of the spring in N-m, and

            ωn = Natural circular frequency of vibration of the machine in
  rad/s.

We know that transmissibility ratio (ε),

     

2 2

2 2 2 2 2

( ) ( )1 1

11 ( ) (157.1) ( )
1

n n

n n

n

ω ω
= = =

ω − ω − ω ω − ω 

or                    2 2 2(157.1) ( ) 11( )n n− ω = ω    or   2( ) 2057ω =n   or   45.35ω =n  rad/s

We know that     1/n s mω =

                 2
1( ) 120 2057 246 840 N / mns m= ω = × =

Since these are five springs, therefore stiffness of each spring

        = 246 840 / 5 = 49 368 N/m  Ans.

2.  Dynamic force transmitted to the base at the operating speed (i.e. 1500 r.p.m.  or  157.1 rad/s)

We know that maximum unbalanced force on the motor due to armature mass,

     2 2 4
2 35(157.1) 5 10 432 NF m r −= ω ⋅ = × =

∴ Dynamic force transmitted to the base,

     T
1

. 432 39.27 N
11

F F= ε = × =  Ans.

3. Natural frequency of the system

We have calculated above that the natural frequency of the system,

     45.35ω =n  rad/s   Ans.
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Example 23.23. A machine has a mass of 100 kg and unbalanced reciprocating parts of
mass 2 kg which move through a vertical stroke of 80 mm with simple harmonic motion. The
machine is mounted on four springs, symmetrically arranged with respect to centre of mass, in
such a way that the machine has one degree of freedom and can undergo vertical displacements
only.

Neglecting damping, calculate the combined stiffness of the spring in order that the force
transmitted to the foundation is 1 / 25 th of the applied force, when the speed of rotation of ma-
chine crank shaft is 1000 r.p.m.

When the machine is actually supported on the springs, it is found that the damping reduces
the amplitude of successive free vibrations by 25%. Find : 1. the force transmitted to foundation at
1000 r.p.m., 2. the force transmitted to the foundation at resonance, and 3. the amplitude of the
forced vibration of the machine at resonance.

Solution. Given : m1 = 100 kg ; m2 = 2 kg ; l = 80 mm = 0.08 m ; ε  = 1 / 25 ;

N = 1000 r.p.m. or 2 1000 / 60ω = π×  = 104.7 rad/s

Combined stiffness of springs

Let         s = Combined stiffness of springs in N/m, and

      ωn  = Natural circular frequency of vibration of the machine in rad/s.
We know that transmissibility ratio ( ε ),

     

2 2

2 2 2 2 2

( ) ( )1 1

25 ( ) (104.7) ( )
1

ω ω= = =
ω − ω − ω ω − ω 

n n

n n

n

or            2 2 2(104.7) ( ) 25( )− ω = ωn n       or    2( ) 421.6ω =n  or 20.5ω =n  rad/s

We know that      1/ω =n s m

∴        2
1 ( ) 100 421.6= ω = ×ns m  = 42 160 N/m Ans.

1. Force transmitted to the foundation at 1000 r.p.m.

Let      FT = Force transmitted, and

       x1 = Initial amplitude of vibration.
Since the damping reduces the amplitude of successive free vibrations by 25%, therefore

final amplitude of vibration,

     2 10.75=x x
We know that

       1

2 22

2
log

( )

  × π
= 

  ω −
e

n

x a

x a
      or      1

21

2
log

0.75 421.6

  × π
= 

  −
e

x a

x a

Squaring both sides,

        
2 2

2
2

4
(0.2877)

421.6

× π=
−

a

a
         or       

2

2

39.5
0.083

421.6
=

−
a

a

1
... log log 1.333 0.2877

0.75e e
   = =    
∵

    2 235 0.083 39.5− =a a               or    2 0.884=a     or    a = 0.94



966      �               Theory of Machines

We know that damping coefficient or damping force per unit velocity,

       12 0.94 2 100= × = × ×c a m  = 188 N/m/s
and critical damping coefficient,

      2 . 2 100 20.5= ω = × ×c nc m  = 4100 N/m/s

∴ Actual value of transmissibility ratio,

        

2

22 2

2

2 .
1

.

2 .
1

. ( )

 ω+ ω ε =
  ω ω+ −    ω ω   

c n

c n n

c

c

c

c

           

2

22 2

2 188 104.7
1

4100 20.5

2 188 104.7 104.7
1

4100 20.5 20.5

× × +  × =
 × ×   + −    ×     

 

1 0.22

0.22 629

+=
+

           
1.104

0.044
25.08

= =

We know that the maximum unbalanced force on the machine due to reciprocating parts,

      2 2
2. . 2(104.7) (0.08 / 2) 877= ω = =F m r  N . . . (∵    r = l / 2)

∴     Force transmitted to the foundation,

     T . 0.044 877= ε = ×F F  = 38.6 N Ans. . . . (∵    T /F Fε = )

2. Force transmitted to the foundation at resonance

Since at resonance, ω = ωn , therefore transmissibility ratio,

        

2 2

2 2

2 2 1881 1
4100 1 0.0084

10.92
0.0922 1882

4100

  × + +    +   ε = = = =
×   

     

c

c

c

c

c

c

and maximum unbalanced force on the machine due to reciprocating parts at resonance speed ωn ,

      2 2
2 ( ) 2(20.5) (0.08 / 2) 33.6= ω = =nF m r  N . . . (∵   r = l / 2)

∴     Force transmitted to the foundation at resonance,

     T . 10.92 33.6= ε = ×F F  = 367 N Ans.

3. Amplitude of the forced vibration of the machine at resonance

We know that amplitude of the forced vibration at resonance

          3Force transmitted at resonance 367
8.7 10

Combinedstiffness 42 160
−= = = ×  m

          = 8.7 mm Ans.
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Example 23.24. A single-cylinder engine of total mass 200 kg is to be mounted on an

elastic support which permits vibratory movement in vertical direction only. The mass of the piston
is 3.5 kg and has a vertical reciprocating motion which may be assumed simple harmonic with a
stroke of 150 mm. It is desired that the maximum vibratory force transmitted through the elastic
support to the foundation shall be 600 N when the engine speed is 800 r.p.m. and less than this at
all higher speeds.

1. Find the necessary stiffness of the elastic support, and the amplitude of vibration at 800
r.p.m., and

2. If the engine speed is reduced below 800 r.p.m. at what speed will the transmitted force
again becomes 600 N?

Solution. Given : m1 = 200 kg ; m2 = 3.5 kg ; l = 150 mm = 0.15 mm or r = l/2 = 0.075 m ;

FT = 600 N ; N = 800 r.p.m. or 2 800 / 60ω = π×  = 83.8 rad/s

We know that the disturbing force at 800 r.p.m.,

      F = Centrifugal force on the piston

2
2. .= ωm r  = 3.5 (83.8)2 0.075 = 1843 N

1. Stiffness of elastic support and amplitude of vibration

Let        s = Stiffness of elastic support in N/m, and

    xmax = Max. amplitude of vibration in metres.

Since the max. vibratory force transmitted to the foundation is equal to the force on the
elastic support (neglecting damping), therefore

Max. vibratory force transmitted to the foundation,

     FT = Force on the elastic support

= Stiffness of elastic support × Max. amplitude of vibration

          = s × xmax 2 2( )n

F
s

m
= ×

 ω − ω 

          22

.

.
= × =

  ω −ω −  

F F s
s

s m sm
m

. . . 
2( )n

s

m
 ω =  
∵

∴
2 6

1843 1843
600

200(83.8) 1.4 10

×= =
− × −

s s

s s
. . . (Substituting m = m1)

* The equation (x) of Art. 23.16 is

 2 2( )
max

n

F
x

m
=

 ω − ω 
Since the max. vibratory force transmitted to the foundation through the elastic support decreases at all

higher speeds (i.e. above N = 800 r.p.m. or ω = 83.8 rad/s), therefore we shall use

                2 2( )
max

n

F
x

m
=

 ω − ω 
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or         840 × 106 – 600 s = 1843 s

∴ s = 0.344 × 106 = 344 × 103 N/m Ans.
and maximum amplitude of vibration,

  2 2 3 3

1843 1843

. 200(83.8) 344 10 1056 10
max

F
x

m s
= = =

ω − − × ×
m

           = 1.745 × 10–3 m = 1.745 mm Ans.

2. Speed at the which the transmitted force again becomes 600 N

The transmitted force will rise as the speed of the engine falls and passes through reso-
nance. There will be a speed below resonance at which the transmitted force will again equal to

600 N. Let this speed be 1ω  rad/s (or N1 r.p.m.).

∴      Disturbing force, 2 2 2
2 1 1 1( ) 3.5( ) 0.075 0.2625( )= ω = ω = ωF m r N

Since the engine speed is reduced below N1 = 800 r.p.m., therefore in this case, max,
amplitude of vibration,

  
22 2 2 11 1

( )( ) ( ) ( )
max

n

F F F
x

s s mm m
m

= = =
    − ωω − ω − ω    

and           Force transmitted = 2
1( )

×
− ω

F
s

s m

∴                           
2 3 2

3 1 1
3 2 2 2

1 1

0.2625( ) 90.3 10 ( )
600 344 10

344 10 200( ) 344 10 200( )

ω × ω= × × =
× − ω × − ω

. . . (Substituting m = m1)

6 3 2 3 2
1 1206.4 10 120 10 ( ) 90.3 10 ( )× − × ω = × ω    or   2

1( ) 981ω =

∴                   1 31.32ω =  rad/s  or  1 31.32 60 / 2= × πN   = 299 r.p.m.  Ans.

EXERCISESEXERCISESEXERCISESEXERCISESEXERCISES
1. A shaft of 100 mm diameter and 1 metre long is fixed at one end and other end carries a flywheel

of mass 1 tonne. Taking Young’s modulus for the shaft material as 200 GN/m2, find the natural
frequency of longitudinal and transverse vibrations. [Ans. 200 Hz ; 8.6 Hz]

2. A beam of length 10 m carries two loads of mass 200 kg at distances of 3 m from each end together
with a central load of mass 1000 kg. Calculate the frequency of transverse vibrations. Neglect the
mass of the beam and take I = 109 mm4 and E = 205×103 N/mm2. [Ans. 13.8 Hz]

3. A steel bar 25 mm wide and 50 mm deep is freely supported at two points 1 m apart and carries a
mass of 200 kg in the middle of the bar. Neglecting the mass of the bar, find the frequency of
transverse vibration.
If an additional mass of 200 kg is distributed uniformly over the length of the shaft, what will be
the frequency of vibration ? Take E = 200 GN/m2. [Ans. 17.8 Hz ; 14.6 Hz]

4. A shaft 1.5 m long is supported in flexible bearings at the ends and carries two wheels each of 50
kg mass. One wheel is situated at the centre of the shaft and the other at a distance of 0.4 m from
the centre towards right. The shaft is hollow of external diameter 75 mm and inner diameter 37.5
mm. The density of the shaft material is 8000 kg/m3. The Young’s modulus for the shaft material is
200 GN/m2. Find the frequency of transverse vibration. [Ans. 33.2 Hz]
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5. A shaft of diameter 10 mm carries at its centre a mass of 12 kg. It is supported by two short

bearings, the centre distance of which is 400 mm. Find the whirling speed : 1. neglecting the mass
of the shaft, and 2. taking the mass of the shaft also into consideration. The density of shaft material
is 7500 kg/m3. [Ans. 748 r.p.m.; 744 r.p.m.]

6. A shaft 180 mm diameter is supported in two bearings 2.5 metres apart. It carries three discs of
mass 250 kg, 500 kg and 200 kg at 0.6 m, 1.5 m and 2 m from the left hand. Assuming the mass of
the shaft 190 kg/m, determine the critical speed of the shaft. Young’s modulus for the material of
the shaft is 211 GN/m2. [Ans. 18.8 r.p.m.]

7. A shaft 12.5 mm diameter rotates in long bearings and a disc of mass 16 kg is secured to a shaft at
the middle of its length. The span of the shaft between the bearing is 0.5 m. The mass centre of the
disc is 0.5 mm from the axis of the shaft. Neglecting the mass of the shaft and taking E = 200
GN/m2, find : 1 critical speed of rotation in r.p.m., and 2. the range of speed over which the stress
in the shaft due to bending will not exceed 120 MN/m2. Take the static deflection of the shaft for a

beam fixed at both ends, i.e. 
3

192

Wl

EI
δ = .                           [Ans. 1450 r.p.m. ; 1184 to 2050 r.p.m.]

8. A vertical shaft 25 mm diameter and 0.75 m long is mounted in long bearings and carries a pulley
of mass 10 kg midway between the bearings. The centre of pulley is 0.5 mm from the axis of the
shaft. Find (a) the whirling speed, and (b) the bending stress in the shaft, when it is rotating at 1700
r.p.m. Neglect the mass of the shaft and E = 200 GN/m2. [Ans. 3996 r.p.m ; 12.1 MN/m2]

9. A shaft 12 mm in diameter and 600 mm long between long bearings carries a central mass of 4 kg.
If the centre of gravity of the mass is 0.2 mm from the axis of the shaft, compute the maximum
flexural stress in the shaft when it is running at 90 per cent of its critical speed. The value of
Young’s modulus of the material of the shaft is 200 GN/m2. [Ans. 14.8 kN/m2]

10. A vibrating system consists of a mass of 8 kg, spring of stiffness 5.6 N/mm and a dashpot of
damping coefficient of 40 N/m/s. Find (a) damping factor, (b) logarithmic decrement, and (c) ratio
of the two consecutive amplitudes. [Ans. 0.094 ; 0.6 ; 1.82]

11. A body of mass of 50 kg is supported by an elastic structure of stiffness 10 kN/m. The motion of
the body is controlled by a dashpot such that the amplitude of vibration decreases to one-tenth of its
original value after two complete vibrations. Determine : 1. the damping force at 1 m/s ; 2. the
damping ratio, and 3. the natural frequency of vibration. [Ans. 252 N/m/s ; 0.178 ; 2.214 Hz]

12. A mass of 85 kg is supported on springs which deflect 18 mm under the weight of the mass. The
vibrations of the mass are constrained to be linear and vertical and are damped by a dashpot which
reduces the amplitude to one quarter of its initial value in two complete oscillations. Find : 1. the
magnitude of the damping force at unit speed, and 2. the periodic time of damped vibration.

[Ans. 435 N/m/s ; 0.27 s]
13. The mass of a machine is 100 kg. Its vibrations are damped by a viscous dash pot which diminishes

amplitude of vibrations from 40 mm to 10 mm in three complete oscillations. If the machine is
mounted on four springs each of stiffness 25 kN/m, find (a) the resistance of the dash pot at unit
velocity, and (b) the periodic time of the damped vibration. [Ans. 6.92 N/m/s ; 0.2 s]

14. A mass of 7.5 kg hangs from a spring and makes damped oscillations. The time for 60 oscillations
is 35 seconds and the ratio of the first and seventh displacement is 2.5. Find (a) the stiffness of the
spring, and (b) the damping resistance in N/m/s. If the oscillations are critically damped, what is the
damping resistance required in N/m/s ? [Ans. 870 N/m ; 3.9 N/m/s ; 162 N/m/s]

15. A mass of 5 kg is supported by a spring of stiffness 5 kN/m. In addition, the motion of mass is
controlled by a damper whose resistance is proportional to velocity. The amplitude of vibration
reduces to 1/15th of the initial amplitude in four complete cycles. Determine the damping force per
unit velocity and the ratio of the frequencies of the damped and undamped vibrations.

[Ans. 34 N/m/s : 0.994]
16. A mass of 50 kg suspended from a spring produces a statical deflection of 17 mm and when in

motion it experiences a viscous damping force of value 250 N at a velocity of 0.3 m/s. Calculate the
periodic time of damped vibration. If the mass is then subjected to a periodic disturbing force
having a maximum value of 200 N and making 2 cycles/s, find the amplitude of ultimate motion.

[Ans. 0.262 s ; 8.53 mm]
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Fig. 23.25

17. A mass of 50 kg is supported by an elastic structure of total stiffness 20 kN/m. The damping ratio
of the system is 0.2. A simple harmonic disturbing force acts on the mass and at any time t seconds,
the force is 60 cos 10 t newtons. Find the amplitude of the vibrations and the phase angle caused by
the damping. [Ans. 3.865 mm ; 14.93°]

18. A machine of mass 100 kg is supported on openings of total stiffness 800 kN/m and has a rotating
unbalanced element which results in a disturbing force of 400 N at a speed of 3000 r.p.m. Assum-
ing the damping ratio as 0.25, determine : 1. the amplitude of vibrations due to unbalance ; and 2.
the transmitted force. [Ans. 0.04 mm ; 35.2 N]

19. A mass of 500 kg is mounted on supports having a total stiffness of 100 kN/m and which provides
viscous damping, the damping ratio being 0.4. The mass is constrained to move vertically and is
subjected to a vertical disturbing force of the type F cos ωt. Determine the frequency at which
resonance will occur and the maximum allowable value of F if the amplitude at resonance is to be
restricted to 5 mm. [Ans. 2.25 Hz ; 400 N]

20. A machine of mass 75 kg is mounted on springs of stiffness 1200 kN/m and with an assumed
damping factor of 0.2. A piston within the machine of mass 2 kg has a reciprocating motion with a
stroke of 80 mm and a speed of 3000 cycles/min. Assuming the motion to be simple harmonic,
find : 1. the amplitude of motion of the machine, 2. its phase angle with respect to the exciting
force, 3. the force transmitted to the foundation, and 4. the phase angle of transmitted force with
respect to the exciting force. [Ans. 1.254 mm ; 169.05° ; 2132 N ; 44.8°]

DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?
1. What are the causes and effects of vibrations ?
2. Define, in short, free vibrations, forced vibrations and damped vibrations.
3. Discuss briefly with neat sketches the longitudinal, transverse and torsional free vibrations.
4. Derive an expression for the natural frequency of free transverse and longitudinal vibrations by

equilibrium method.
5. Discuss the effect of inertia of the shaft in longitudinal and transverse vibrations.
6. Deduce an expression for the natural frequency of free transverse vibrations for a simply supported

shaft carrying uniformly distributed mass of m kg per unit length.
7. Deduce an expression for the natural frequency of free transverse vibrations for a beam fixed at

both ends and carrying a uniformly distributed mass of m kg per unit length.
8. Establish an expression for the natural frequency of free transverse vibrations for a simply sup-

ported beam carrying a number of point loads, by (a) Energy method ; and (b) Dunkerley’s method.
9. Explain the term ‘whirling speed’ or ‘critical speed’ of a shaft. Prove that the whirling speed for a

rotating shaft is the same as the frequency of natural transverse vibration.
10. Derive the differential equation characterising the motion of an oscillation system subject to vis-

cous damping and no periodic external force. Assuming the solution to the
equation, find the frequency of oscillation of the system.

11. Explain the terms ‘under damping, critical damping’ and ‘over damping’
12. A thin plate of area A and mass m is attached to the end of a spring and is

allowed to oscillate in a viscous fluid, as shown in Fig. 23.25. Show that

2 2( )µ = ω − ωd
m

A

where the damping force on the plate is equal to . .µ Av ; v being the velocity.

The symbols ω and ωd  indicate the undamped and damped natural circular frequencies of

oscillations.
13. Explain the term 'Logarithmic decrement' as applied to damped vibrations.
14. Establish an expression for the amplitude of forced vibrations.
15. Explain the term ‘dynamic magnifier’.
16. What do you understand by transmissibility ?
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OBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONS
1. When there is a reduction in amplitude over every cycle of vibration, then the body is said to have

(a) free vibration (b) forced vibration (c) damped vibration

2. Longitudinal vibrations are said to occur when the particles of a body moves

(a) perpendicular to its axis (b) parallel to its axis

(c) in a circle about its axis

3. When a body is subjected to transverse vibrations, the stress induced in a body will be

(a) shear stress (b) tensile stress (c) compressive stress

4. The natural frequency (in Hz) of free longitudinal vibrations is equal to

(a)
1

2π
s

m
(b) 

1

2π δ
g

(c ) 
0.4985

δ

(d) any one of these

where    m = Mass of the body in kg,

s = Stiffness of the body in N/m, and

δ  = Static deflection of the body in metres.

5. The factor which affects the critical speed of a shaft is

(a) diameter of the disc (b) span of the shaft

(c) eccentricity (d) all of these

6. The equation of motion for a vibrating system with viscous damping is

2

2
0

d x c dx s
x

m dt mdt
+ × + × =

If the roots of this equation are real, then the system will be

(a) over damped (b) under damped (c) critically damped

7.  In under damped vibrating system, if x1 and x2 are the successive values of the amplitude on the
same side of the mean position, then the logarithmic decrement is equal to

(a)  x1/x2 (b) log (x1/x2) (c) loge (x1/x2) (d) log (x1.x2)

8. The ratio of the maximum displacement of the forced vibration to the deflection due to the static
force, is known as

(a)  damping factor (b) damping coefficient

(c)  logarithmic decrement (d) magnification factor

9.  In vibration isolation system, if / nω ω  is less than 2 , then for all values of the damping factor, the

transmissibility will be

(a) less than unity   (b)  equal to unity (c) greater than unity (d) zero

   where   ω = Circular frequency of the system in rad/s, and

      ωn = Natural circular frequency of vibration of the system in rad/s.

10. In vibration isolation system, if ω/ωn > 1, then the phase difference between the transmitted force
and the disturbing force is

(a) 0° (b) 90° (c) 180° (d) 270°

ANSWERSANSWERSANSWERSANSWERSANSWERS
1.  (c) 2.  (b) 3.  (b) 4.  (d) 5.  (d)

6.  (a) 7.  (b) 8.  (d) 9.  (c) 10.  (c)
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