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23.1. Introduction

When elastic bodies such as a spring, abeam and a
shaft are displaced from the equilibrium position by the ap-
plication of external forces, and then released, they execute
a vibratory motion. This is due to the reason that, when a
body is displaced, the internal forces in the form of elastic
or strain energy are present in the body. At release, these
forces bring the body to its original position. When the body
reaches the equilibrium position, the whole of the elastic or
strain energy is converted into kinetic energy due to which
the body continues to move in the opposite direction. The
whole of the kinetic energy is again converted into strain
energy due to which the body again returns to the equilib-
rium position. In this way, the vibratory motion is repeated
indefinitely.

23.2. Terms Used in Vibratory Motion

The following terms are commonly used in connec-
tion with the vibratory motions :
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910 e Theory of Machines

1. Period of vibration or time period. It is the time interval after which the motion is
repeated itself. The period of vibration is usually expressed in seconds.

2. Cycle. It is the motion completed during one time period.

3. Frequency. It is the number of cycles described in one second. In S.I. units, the fre-
quency is expressed in hertz (briefly written as Hz) which is equal to one cycle per second.

23.3. Types of Vibratory Motion

The following types of vibratory motion are important from the subject point of view :

1. Free or natural vibrations. When no external force acts on the body, after giving it an
initial displacement, then the body is said to be under free or natural vibrations. The frequency of
the free vibrations is called free or natural frequency.

2. Forced vibrations. When the body vibrates under the influence of external force, then
the body is said to be under forced vibrations. The external force applied to the body is a periodic
disturbing force created by unbalance. The vibrations have the same frequency as the applied force.
Note : When the frequency of the external force is same as that of the natural vibrations, resonance takes
place.

3. Damped vibrations. When there is areduction in amplitude over every cycle of vibration,
the motion is said to be damped vibration. This is due to the fact that a certain amount of energy
possessed by the vibrating system is always dissipated in overcoming frictional resistances to the
motion.

23.4. Types of Free Vibrations

The following three types of free vibrations are important from the subject point of view :
1. Longitudinal vibrations, 2. Transverse vibrations, and 3. Torsiona vibrations.

Consider aweightless constraint (spring or shaft) whose one end is fixed and the other end
carrying a heavy disc, as shown in Fig. 23.1. This system may execute one of the three above
mentioned types of vibrations.

/
| | '
| i |
i Shatt i1 i
i | R Y ‘\‘ -
A i A':,"' \.:::"' ! '::-"" ‘::‘.C :
. I T L]
__________ B
. v

B = Mean position ; A and C = Extreme positions.
(a) Longitudinal vibrations. (b) Transverse vibrations. (c) Torsiona vibrations.
Fig. 23.1. Types of free vibrations.

1. Longitudinal vibrations. When the particles of the shaft or disc moves parallel to the
axis of the shaft, as shown in Fig. 23.1 (a), then the vibrations are known as longitudinal vibrations.
In this case, the shaft is elongated and shortened aternately and thus the tensile and compressive
stresses are induced alternately in the shaft.
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2. Transverse vibrations. When the particles of the shaft or disc move approximately
perpendicular to the axis of the shaft, as shown in Fig. 23.1 (b), then the vibrations are known as
transverse vibrations. In this case, the shaft is straight and bent alternately and bending stresses are
induced in the shaft.

N

ilt taking vibrations into account.

Bridges should be bu

3. Torsional vibrations*. When the particles of the shaft or disc move in a circle about the

axis of the shaft, as shown in Fig. 23.1 (c), then the vibrations are known as torsional vibrations.
In this case, the shaft is twisted and untwisted alternately and the torsional shear stresses are in-
duced in the shaft.
Note : If the limit of proportionality (i.e. stress proportional to strain) is not exceeded in the three types of
vibrations, then the restoring force in longitudinal and transverse vibrations or the restoring couple in torsional
vibrations which is exerted on the disc by the shaft (due to the stiffness of the shaft) is directly proportional
to the displacement of the disc from its equilibrium or mean position. Hence it follows that the acceleration
towards the equilibrium position is directly proportional to the displacement from that position and the vibration
is, therefore, simple harmonic.

23.5. Natural Frequency of Free Longitudinal Vibrations
The natural frequency of the free longitudinal vibrations may be determined by the following
three methods :
1. Equilibrium Method
Consider a constraint (i.e. spring) of negligible mass in an unstrained position, as shown in
Fig. 23.2 (a).
Let s = Stiffness of the constraint. It is the force required to produce

unit displacement in the direction of vibration. It is usually
expressed in N/m.

m= Mass of the body suspended from the constraint in kg,
W = Weight of the body in newtons = m.g,

*  Thetorsiona vibrations are separately discussed in chapter 24.
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o = Static deflection of the spring in metres due to weight W
newtons, and
x = Displacement givento the body by the external force, in metres.

g_ ¥ ZIW=ss
Unstrained &
position 3 ) sB+x) -

.....

Fig. 23.2. Natural frequency of free longitudinal vibrations.
In the equilibrium position, as shown in Fig. 23.2 (b), the gravitational pull W = m.g, is
balanced by a force of spring, such that W=s.§.

Since the mass is now displaced from its equilibrium position by a distance x, as shown in
Fig. 23.2 (c), and is then released, therefore after timet,

Restoring force =W -s(d+x) =W —-s. 0-S.X
=30-S0-S.X =8X oo (eW=sy L (D)
.. (Taking upward force as negative)
and Accelerating force = Mass x Acceleration
2x
= mxdt_z' . . (Taking downward force as positive) . . . (ii)
Equating equations (i) and (ii), the equation of motion of the body of mass m after timetis
d?x 2x _
MX——=-SX or MX——+SX =0
dt dt
2
0 dX, S ix=0 . (iii)
dt2 m

We know that the fundamental equation of simple harmonic motion is
+wP.x =0 .o (iv)

dt
Comparing equations (iii) and (iv), we have

0  Time period, ty=—=
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and natural frequency,

_1_1\/?_1\/5 2
fo=—=—[2>==[2
tp, 2mym  2my 9

m.g = s.9)

Taking the value of g as 9.81 m/s® and & in metres,

n

i &. _ 0.4985 Hy
oni\ 3 Js

Note : The value of static deflection d may be found out from the given conditions of the problem. For
longitudinal vibrations, it may be obtained by the relation,

Stress_E

Strain

where

W W
—x—=E o=——
o ATS or EA

O = Static deflection i.e. extension or compression of the constraint,

W = Load attached to the free end of constraint,
| = Length of the constraint,
E = Young's modulus for the constraint, and

A=

2. Energy method

We know that the kinetic
energy is due to the motion of the
body and the potential energy is
with respect to a certain datum
position which is equal to the
amount of work required to move
the body from the datum position.
In the case of vibrations, the
datum position is the mean or
equilibrium position at which the
potentia energy of the body or the
system is zero.

In the free vibrations, no
energy istransferred to the system
or from the system. Therefore the
summation of kinetic energy and
potential energy must be a
constant quantity which is same at
all the times. In other words,

0 Y«EeE+PE)=0
dt

We know that kinetic en-
ergy,

Cross-sectional area of the constraint.

This industrial compressor uses compressed air to power heavy-
duty construction tools. Compressors are used for jobs, such
as breaking up concrete or paving, drilling, pile driving, sand-
blasting and tunnelling. A compressor works on the same prin-
ciple as a pump. A piston moves backwards and forwards in-
side a hollow cylinder, which compresses the air and forces it
into a hollow chamber. A pipe or hose connected to the cham-
ber channels the compressed air to the tools.

Note : This picture is given as additional information and
is not a direct example of the current chapter.

1 Dde2

K.E.=EXmBaB
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and potential energy, PE.= E’ﬂﬁx == xsx?

.. (. PE. = Mean force x Displacement )

d DdXD2
O dt%x B—H —XSX DZO

1 dx _d?x dx
ZXmMX2xX— x— += xs x2X x— =0
2 dt g2 2 dt
2 2
or mxd—2X+sx:O or d—;(+E><x:0 ... (Same as before)
dt dec m

The time period and the natural frequency may be obtained as discussed in the previous
method.

3. Rayleigh’s method

In this method, the maximum kinetic energy at the mean position is equal to the maximum
potential energy (or strain energy) at the extreme position. Assuming the motion executed by the
vibration to be simple harmonic, then

x= Xsinat N0
where x = Disgplacement of the body from the mean position after time t
seconds, and

X = Maximum displacement from mean position to extreme position.
Now, differentiating equation (i), we have
% = wxX cos wt

Since at the mean position, t = 0, therefore maximum velocity at the mean position,

0 Maximum kinetic energy at mean position
1 1
== xmv? =2 xm.of. X2 (1))
2 2

and maximum potential energy at the extreme position
[0+s.X0O

"0 X7 =2 xsx? . (iii)

Equating equations (ii) and (iii),

1 1
Zxmal X% ==xsX? o o2 =" and w=, |
2 2 m m

0 Time period, ty = . (Same as before)

ely
lu)
%
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and natural frequency,  f, = L) :i\/E . . . (Same as before)
m

Note : In all the above expressions, wis known as natural circular frequency and is generally denoted by

(Ve

23.6. Natural Frequency of Free Transverse Vibrations

Consider a shaft of negligible mass, whose one 7
end isfixed and the other end carries abody of weight S T CWet -
W, as shown in Fig. 23.3. . Mean position ~ _____ _ 15
Let s = Stiffness of shaft, I IX
o = Static deflection due to " I
weight of the body, Pomat I
x = Displacement of body from I
mean position after time t. mdx
m = Mass of body = W/g df

Fig. 23.3. Natural frequency of free

As discussed in the previous article, transverse vibrations.

Restoring force = —sXx ()
. d2x ..
and accelerating force =mx— )
ol
Equating equations (i) and (ii), the equation of motion becomes
2 2
mxﬂ:—sx or mxd—2X+sx:0
dt? dt
2
O ﬂ+ixx:0 . . . (Same as before )
dt2 m

Hence, the time period and the natural frequency of the transverse vibrations are same as
that of longitudinal vibrations. Therefore

Time period, t, = 2"\/@
1 \E _1 @
2nym 2m\ &

Note : The shape of the curve, into which the vibrating shaft deflects, is identical with the static deflection
curve of a cantilever beam loaded at the end. It has been proved in the text book on Strength of Materials,
that the static deflection of a cantilever beam loaded at the free end is

and natura frequency, fn = ti
p

3

W2 (in metres)
3El

where W = Load at the free end, in newtons,
| = Length of the shaft or beam in metres,
E = Young's modulus for the material of the shaft or beam in
N/m?, and
| = Moment of inertia of the shaft or beam in m*.
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Example 23.1. A cantilever shaft 50 mm diameter and 300 mm long has a disc of mass
100 kg at its free end. The Young's modulus for the shaft material is 200 GN/n. Determine the
frequency of longitudinal and transverse vibrations of the shaft.

Solution. Given : d = 50 mm = 0.05 m ; | = 300 mm = 0.03 m ; m = 100 kg ;
E = 200 GN/m? = 200 x10° N/m?
We know that cross-sectiona area of the shaft,

A= Exdz :iT(o.OS)2 =1.96 x10 3m?
and moment of inertia of the shaft,
I = xd4 = (0.05)* =0.3x10%m?
64 64

Frequency of longitudinal vibration
We know that static deflection of the shaft,

g=l o 100X98X03 475120 m
AE  1.96x10° x200x10
...(- W=mg)
O Frequency of longitudinal vibration,
f= 04985 _ 04985  _ 575 Hz Ans.
V& Jo751x107
Frequency of transverse vibration
We know that static deflection of the shaft,
3 3
_WiI” _ 100x9.81x(0.3) ~0147 X102 m

3El  3x200x10° x0.3x10°°
0  Frequency of transverse vibration,

_ 04985 _ 04985
V& Jo147x1078

23.7. Effect of Inertia of the Constraint in Longitudinal and Transverse

fn =41 Hz Ans.

Vibrations TR

In deriving the expressions for natural frequency of I( i
longitudinal and transverse vibrations, we have neglected the inertia !
of the constraint i.e. shaft. We shall now discuss the effect of the ]
inertia of the constraint, as below : L ox
1. Longitudinal vibration

Consider the constraint whose one end is fixed and other end ™
is free as shown in Fig. 23.4.

Let m, = Mass of the constraint per unit length, v

| = Length of the constraint, Fig. 23.4. Effect of inertia
m, = Total mass of the constraint = m,. |, and of the constraint in

v = Longitudinal velocity of the free end. longitudingl vibrations.
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Consider a small element of the constraint at a distance x from the fixed end and of
length &x .
O Velocity of the small element

X
— XV

I

and kinetic energy possessed by the element

1 o
=§ x Mass (velocity)

| (242 2 307
:Ioml.vx ey =MV Lk

=50
212 22 030,
_my? 1P _10ml0O, 1DrrbDZ

_1 2 ) _1 .
2I2 E_Zxrn_l.'v X ZB_HV . (I)

. (Substltutlng m, . 1=m)

If amass of % is placed at the free end and the constraint is assumed to be of negligible

mass, then
Total kinetic energy possessed by the constraint
10m:.O 2 ..
_EB_B H ... [Same as equation (i)] . . . (ii)

Hence the two systems are dynamically same. Therefore, inertia of the constraint may be
allowed for by adding one-third of its mass to the disc at the free end.

From the above discussion, we find that when the mass of the constraint m. and the mass
of the disc m at the end is given, then natural frequency of vibration,

2. Transverse vibration AV
Consider a constraint whose one end is fixed and the other

~N
end is free as shown in Fig. 23.5. J
- ; ; N 2 m
Let m, = Mass of constraint pq unit length, Yo xol o
| = Length of the constraint, N /
m. = Total mass of the constraint = m,.I, and ) vv
v = Transverse velocity of the free end. Fig. 235. Effect of inertia
Consider a small element of the constraint at a distance x of the constraint in

from the fixed end and of length 3x. The velocity of this element is transverse vibrations.
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_ BIx2-x3 O
given by B—ngD
g 2 g

5 X _X x [?

and total kinetic energy of the constraint,

:-I!%xnh[tfil X2|3_X ng dx =

Cmv? 120 _6I.x 7%
816 5§ 5 6 7 o

_ml.vzébﬂ_7_6l7 7D mlv 03310
Te5 55 675 8 E
B S e B2
. (Substituting m,.I = m.)
If amass of 33;2C is placed at the free end and the constraint is assumed to be of negli-

gible mass, then
Tota kinetic energy possessed by the constraint

1 [BSmCD 2
_EWH ... [Same as equation (i)]

Hence the two systems are dynamically same. Therefore the inertia of the constraint may
33
be alowed for by adding 120 of its mass to the disc at the free end.

From the above discussion, we find that when the mass of the constraint m. and the mass
of the disc m at the free end is given, then natural frequency of vibration,

_1 S
hE— ———
21 m+33”b
140

Notes : 1. If both the ends of the constraint are fixed, and the disc is situated in the middle of it, then
proceeding in the similar way as discussed above, we may prove that the inertia of the constraint may be

13
allowed for by adding 35 of its mass to the disc.

2. If the constraint is like a simply supported beam, then = of its mass may be added to the mass

35
of the disc.
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23.8. Natural Frequency of Free Transverse Vibrations Due to a Point
Load Acting Over a Simply Supported Shaft

Consider a shaft AB of length |, carrying a point w
load W at C which is at adistance of |, from A and |, from |<— h —>l~c L >
B, as shown in Fig. 23.6. A little consideration will show A £
that when the shaft is deflected and suddenly released, it ‘ g
will make transverse vibrations. The deflection of the shaft ey B
is proportional to the load W and if the beam is deflected T .
beyond the static equilibrium position then the load will !
vibrate with simple harmonic motion (as by a helical Fig. 23.6. Simply supported beam
spring). If § isthe static deflection due to load W, then the with a point load.
natural frequency of the free transverse vibration is
f:i9:0'4985H o 081 w2
nTom s \/8 z ... (Substituting, g = 9.81 m/sY)

Some of the values of the static deflection for the various types of beams and under various
load conditions are given in the following table.
Table 23.1. Values of static deflection (d) for the various types of beams
and under various load conditions.

S.No. Type of beam Deflection (8)
WE
1. Cantilever beam with a point load W at the o =3E (at the free end)
free end.
w
by
Y
7 [ -
. . ) w4
2. Cantilever beam with a uniformly o =SE (at the free end)
distributed load of w per unit length.
y [W/ unit length
yalaaaaaaaaa'aa
/
Y !
. ) . Wa?h? .
3. Simply supported beam with an eccentric o= 3E1T (at the point load)
point load W.
f
A A
l«— a <« h——>
I< ! >
. . _ wi?
4, Simply supported beam with a central point & =—— (at the centre)
48EI
load W. w
«— /2 —»Iq— 2 —>
I l 1
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S.No. Type of beam Deflection (8)

4
5 Simply supported beam with a uniformly 14} > W (at the centre)

distributed load of w per unit length. € E
/unit length
[W
NN Y Y Y Y Y Y Y Y Y

< / >

Wa’b?
6. Fixed beam with an eccentric point load W. =
W 3EII

.

4 N
je—a—ple——b—»
l >»|

(at the point load)

ANMNN
777

3
" 192E]

7. Fixed beam with a central point load W.
w w

|

T 12 —e—— 12 ——>
»l

< I 1

(at the centre)

AN

4
8. Fixed beam with a uniformly distributed o= W (at the centre)

load of w per unit length. SB4El

[w/unit length
Y Y Y Y Y Y Y Y Y Y

< / >

Example 23.2. A shaft of length 0.75 m, supported freely at the ends, is carrying a body of
mass 90 kg at 0.25 m from one end. Find the natural frequency of transverse vibration. Assume
E = 200 GN/n? and shaft diameter = 50 mm.

Solution. Given: 1 =0.75m; m=90kg; a= AC = 0.25m ; E = 200 GN/m? = 200 x 10°
N/m? d = 50 mm = 0.05 m

The shaft is shown in Fig. 23.7. 90kg

We know that moment of inertia of the shaft, lC

I =L xd* = (0.05)*m?
64 64

A
0,25 «—0.5m —

«— 0.75m —

=0.307 x10 %m*

and static deflection at the load point (i.e. at point C), Fig. 23.7

_Wa’h® _ 90x9.81(0.25)*(05)°
BEIl  3x200x10° x0.307 x107° x0.75
...(~+b=BC=05m)

=0.1x1073 m
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We know that natural frequency of transverse vibration,

04985 0.4985
V& Jo1x107?

Example 23.3. A flywheel is mounted on a vertical shaft as shown in Fig. 23.8. The both
ends of the shaft are fixed and its diameter is 50 mm. The flywheel has a mass of 500 kg. Find the
natural frequencies of longitudinal and transverse vibrations. Take E = 200 GN/n?.

Solution. Given : d =50 mm = 0.05m ; m= 500 kg ; E = 200 GN/m? = 200 x 10° N/m?

fn

=49.85Hz Ans.

We know that cross-sectional area of shaft, T i T
A= gde = f(o.os)2 =1.96 x10% m2 I | 0.9m
and moment of inertia of shaft, i {
O—++1—%0O
_m_a_ T 4 _ -6 4 T
| = xd" =, (005" =0.307x10°m 2 | oo
Natural frequency of longitudinal vibration v | y
Let m, = Mass of flywheel carried by the length |,. Fig. 23.8
O m—m, = Mass of flywheel carried by length ..
We know that extension of length |,
Wl _megly ()
AE AE

Similarly, compression of length |,
_W-w)l, _(m-m)gl, (i)
AE AE Y
Since extension of length |, must be equal to compression of length |, therefore equating
equations (i) and (ii),

My = (m-my)l,
m; x0.9 =(500 -m;) 0.6 =300 -0.6m, or m =200 kg
0 Extensionof length I,

5= m.gl; _ 200><_2.81><O.9 g —45x10-°m
AE  1.96x107° x200x10
We know that natural frequency of longitudina vibration,
0.4985 0.4985
f, = = =235Hz Ans

- 5 Jasx10°

Natural frequency of transverse vibration
We know that the static deflection for a shaft fixed at both ends and carrying a point load
is given by
_walh® 500x 9.81(0.9)3(0.6)°
T 3EIR 3x200x10° x0.307 X106 (1.5)3
... (SubstitutingW=mg;a=1,andb=1)

=1.24x103 m
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We know that natural frequency of transverse vibration,
04985  0.4985
V& 124x107

fi = 1424 Hz Ans.

23.9. Natural Frequency of Free Transverse Vibrations Due to Uniformly
Distributed Load Acting Over a Simply Supported Shaft

Consider a shaft AB carrying a uniformly distributed load of w per unit length as shown in
Fig. 23.9.
Let y, = Static deflection at the middle of the shaft,
a,= Amplitude of vibration at the middle of the shaft, and
w, = Uniformly distributed load per unit static deflection at the
middle of the shaft = wiy,.

|<— X —>| l—3x w/ unit length
A B
N3~ y | T Mean position __-57
RN 1 n -
AN \|~ - )" Pid
~ - —k -7 -7
> a - ”

\T\ ~<_ a - Extreme

Static deflection curve _T_ - positions
< I |

Fig. 23.9. Simply supported shaft carrying a uniformly distributed load.

Now, consider a small section of the shaft at a distance x from A and length &x .
Let y = Static deflection at a distance x from A, and

a = Amplitude of its vibration.
[0  Work done on this small section

:Exwl,ai_éxxa :l Xﬂ xg. & A :-1 X Xa—l a XR
2 2 Y1 2 Y1

Since the maximum potential energy at the extreme position is equal to the amount of work
done to move the beam from the mean position to one of its extreme positions, therefore
Maximum potential energy at the extreme position

|
_clooa
—lg"wx— xadx )

Y

Assuming that the shape of the curve of a vibrating shaft is similar to the static deflection
curve of a beam, therefore

A -cCongant,C or A _c anda=yC
iy Y1

Substituting these values in equation (i), we have maximum potential energy at the extreme
position
| 1 1 |
= [ZxwxC xy.C.dx == xw.C2 [ v.d ... (i
‘([)2 w yCud =2 xw J;y X (i)



Chapter 23 : Longitudinal and Transverse Vibrations ® 923

Since the maximum velocity at the mean position is w.ay , where wisthe circular frequency

of vibration, therefore
Maximum kinetic energy at the mean position

[ [
1 wadx 2 _ W 202
= [=x—=(wa)? =— x5 C .ax
_!2 g (wa) 2q .!y ... (i)
. . .(Substituting a=y.C)

We know that the maximum potential energy at the extreme position is equal to the maximum
kinetic energy at the mean position, therefore equating equations (ii) and (iii),

| |
1 2 w 2.2
ZxwxC2[vdx =— xf xC .ax
S XwW !y % !y

O o =9 or .o (iv)

When the shaft is a simply supported, then the static deflection at a distance x from A is

w
24 El

*

y= (x* =21 3 +13x) )
where w = Uniformly distributed load unit length,
E = Young's modulus for the material of the shaft, and

| = Moment of inertia of the shaft.

* It has been proved in books on * Strength of Materials' that maximum bending moment at a distance x
from Ais

Integrating this expression,

3 2
£l g:wx _wl.x

‘dx 2x3  2x2

+ Cl

On further integrating,
4
Ely= W Wi +Cx +Cy
2x3x4 2x2x%3

wx? wid

R
where C, and C, are the constants of integration and may be determined from the given conditions of

the probflem. Here

when x=0,y=0; O C,=0
and when x=1,y=0; O Clz\g—lj
Substituting the value of C,, we get
y= d (x4—2lx3+l3x)

24El
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A railway bridge.
Now integrating the above equation (v) within the limitsfrom O to |,

| 5 4 3.2
w 4 3.3 _w 21Xt I°x
= W (s -21¢ +13x) dx = -2y
ondx A E] -!(x X X) dx

24EI 05 4 2 Eb
w O 2° 1*P0 w 1P owlP® .
= =—-——+—]= X— = cee (i)
A4EI (5 4 20 24El 5 120El

Now

I I
2. 0 w 4 3 3 DZ
.!y dX—I %(X 2 X+l X)E dx

o

Ck

I
D24 Eyr=gt I OB +41%x° +1°x2 4l X —41*x* +213x%) dx
0
0

9 42,7 (6.3 45 53,60
w BE an 15¢ 4¢ 41t 2%

575 576E212 59 7 3 8 5 6 &
w gj 4° 19 _4° _a® 21°0
TEE2I29 7 3 8 5 6.
_ow s )
" 576E2(2 630 o (vid)

Substituting the value in equation (iv) from equations (vi) and (vii), we get circular frequency
due to uniformly distributed load,

. gD wi® X576E2I2><6305
ELZOEI w? x311°
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24 El x@g _ 2 El g
W4 155 _vvl4 .. (Vi)

[0 Natural frequency due to uniformly distributed load,

_ EI EI )
—2—]_[—2— . (1x)

We know that the static deflection of asi mpIy supported shaft due to uniformly distributed
load of w per unit length, is

5w Bl 5
or

O = = =-_-
- S " 384El Wi 3845
Equation (ix) may be written as

59 _05615
38455 \/’

23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at
Both Ends Carrying a Uniformly Distributed Load

Consider a shaft AB fixed at both ends w/unit length

. (Substituting, g = 9.81 m/s?)

and carrying a uniformly distributed load of w émm‘% ¥
. . . A 7 B
per unit length as shown in Fig. 23.10. 1. X
We know that the static deflection at a :‘/ I ‘vaw
wi wi

distance x from A is given by > >
Fig. 23.10. Shaft fixed at both ends
*y= (X 1252 2|X3) 0 carrying a uniformly distributed load.
24El

* It has been proved in books on ‘ Strength of Materials' that the bending moment at adistance x from Ais

voog Gy ow? wé  wix
a2 12 2 2

Integrating this equation,

2 2
£l dy _wl - WX3_W|X e

dx 12 2x3 2x%x2

where C, is the constant of integration. We know that when x =0, gy 0. Therefore C, = 0.
X

dy w2 o owe wix?
or Xt
dx 12 6 4
Integrating the above equation,
w2 wx® w3 wiZ  wx® wixe
Elly=—— e o
12x2 6x4 4 3 24 24 12

where C, is the constant of integration. We know that when x = 0, y = 0. Therefore C, = 0.
or Ely=2, (| X2 +x* - 21x3)

w

_ 3
or YT )

(x +12x2 ~2Ix
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Integrating the above equation within limits from O to |,

|
w 4,22 3
=— +1 =2l d
ondx SAEl {(x X x°) dx

|
W E_lkf I2x3_21x4g w SE E 210
T24EI(5 3 4, 24EI05 3 4q

w15 w®

= X— =
24El 30 720El
Now integrating y* within the limits from 0 to |,

|
4+|2 2_2I 3 2dX
jy =T jo(x =21 )

|
O
=g _§ I(x8+l4x4 +4125E +212E -4 X7 -213%5) dix
=la O

I

0w O
=g 0 [0+ +61%° 4417 -21%¢) ox

aEif )

I
DZ 06 196 6157 4 _2%¢0
sEHge 5 7 8 60

DZEIQ L°,6° 4° 2°0 0 w O° 1°

H5 "5 7 78 60 HEH &0

We know that |
gj ydx
5 0 wl®  (24E1)?x630 504Elg
w = = X X. —
' 720El WAk w4
Iyzdx
0
. o= [PHElg
wi?
and natural frequency,
=@ 1 [SO4EIG 555 EIG
2 2n\ w? WI4

Since the static deflection of a shaft fixed at both ends and carrying a uniformly distributed
load is

wl4 El 1

S T 384El wi4 3845
_ 0571

g - L
O f, =3.573 Hz ... (Substituting, g = 9.81 m/s?)
\38455  fos
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23.11.Natural Frequency of Free Transverse Vibrations For a Shaft
Subjected to a Number of Point Loads

Consider a shaft AB of negligible mass loaded with

point loads W, , W,,, W, and W, etc. in newtons, as shown W, w, w, W,
in Fig. 23.11. Let m;, m,, m, and m, etc. be the corre- l l l l
sponding masses in kg. The natural frequency of such a A B
shaft may be found out by the following two methods : 4 ?/ [) [ f/ \
L 7S 4
1. Energy (or Rayleigh’s) method ’ )
Lety,, Y, Ys Y, €tc. betotal deflection under loads
W,, W,, W, and W, etc. as shown in Fig. 23.11. Fig. 23.11. Shaft carrying a
We know that maximum potential energy number of point loads.
1
:Exml-g-)’l +E xM,.0.Y, +E mM;.9.Ys +E mMy.0.y, ...
1
=—-2mg.
5 gy
and maximum kinetic energy
1 1 1 1
:Exml((*))ﬁ)z +E xm, (0y,)? "E g (ys)? +§ (W) *e
1
=5 of Hny (Y)? +my (¥2)7 +my (y3)® +my (v,)? +..H
1 2 : -
= E x of my ... (where o = Circular frequency of vibration)

Equating the maximum kinetic energy to the maximum potentia energy, we have

1 , 1
Zxof Imy? == Smg.
> y 5 g.y

o _Zmgy _gamy or =
smy?  =my? Fmy?

0 Natura frequency of transverse vibration,

2. Dunkerley's method

The natural frequency of transverse vibration for a shaft carrying a number of point loads
and uniformly distributed load is obtained from Dunkerley’s empirical formula. According to this

1:1+1+1+""+1
()% (fu)®  (F2)®  (f5)? (frs)
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where f, = Natural frequency of transverse vibration of the shaft
carrying point loads and uniformly distributed load.

fris fnos fngs €tC Natural frequency of transverse vibration of each point load.

Natural frequency of transverse vibration of the uniformly
distributed load (or due to the mass of the shaft).
Now, consider a shaft AB loaded as shown in Fig. 23.12.

frs

Wi W2 WS

mength
B

A A

< / ,

A

Fig. 23.12. Shaft carrying a number of point loads and a uniformly distributed load.

Let 8,0,,0;, etc. = Static deflection due to the load W,, W,, W; etc. when
considered separately.
Static deflection due to the uniformly distributed load or due

to the mass of the :

shaft. :

We know that natural frequency of transverse
vibration due to load W,,

O

0.4985
fy =——— Hz

Y
Similarly, natural frequency of transverse vibra-
tion due to load W,

_0.4985

Y

and, natural frequency of transverse vibration dueto load g
W,

fo

_0.4985

SNCY

Also natural frequency of transverse vibration
due to uniformly distributed load or weight of the shaft,

_ 05615

f, Hz

f = Suspension spring of an automobile.

ns /58 Note : This picture is given as additional

information and is not a direct example of the
current chapter.

Therefore, according to Dunkerley’'s empirical
formula, the natural frequency of the whole system,

1 1 1 1 1
2 = 2 + 2 + 3 +...+ >
(fn) (fnl) (fnz) (fn3) (fns)
% & 8 &

e F———
(0.4985)%  (0.4985)°  (0.4985)° (0.5615)?

~ (0.4985)2 %1 HO R e oo
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_ 0.4985
or fn = Hz

19
Oy +8, +& .
\/1 %*8 1.27

Notes : 1. When there is no uniformly distributed load or mass of the shaft is negligible, then dg =0.

f :& Hz
" O +0 +8& ..

2. Thevalue of &, &,, &; etc. for asimply supported shaft may be obtained from the relation

O

_ Wa?b?
3Ell

where & = Static deflection due to load W,
a and b = Distances of the load from the ends,

E = Young's modulus for the material of the shaft,

| = Moment of inertia of the shaft, and

| = Total length of the shaft.

Example 23.4. A shaft 50 mm diameter and 3 metres long is simply supported at the ends

and carries three loads of 1000 N, 1500 N and 750 N at 1 m, 2 m and 2.5 m from the left support.
The Young's modulus for shaft material is 200 GN/n?. Find the frequency of transverse vibration.

Solution. Given : d =50 mm = 0.05m ;|1 =3 m, W, = 1000 N ; W, = 1500 N ;
W, = 750 N; E = 200 GN/m? = 200 x 10° N/m?

The shaft carrying the loads is shown in Fig. 23.13
We know that moment of inertia of the shaft,

= «44 =" (0.05)* =0.307 x10 ®m?
64 64

and the static deflection due to a point load W,

212
5:Wa b
3ElI
1000 N 1500 N 750N
lo o e
Al | B
A
—1 m—>| T
<t 2m P
< 25m >
< 3m >|
Fig. 23.13
0 Static deflection due to a load of 1000 N,
202
61 — 1000x1° x 2 =724 X10_3 m

3x200x10° x0.307 x107® x3
...(Herea=1m,andb=2m)
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Similarly, static deflection due to a load of 1500 N,
1500 22 x1?

= 5 —— =10.86x10° m
3x200x10° x0.307 x10°® x3

2
...(Herea=2m,and b=1m)

and static deflection due to a load of 750 N,
750(2.5)? (0.5)?

= . —— =212 x10° m
3%x200x10° x0.307 x10°® x3
...(Herea=25m,and b =05 m)

3

We know that frequency of transverse vibration,

04985 0.4985
- -
o+ +&  [724x1078 +10.86x1073 +2.12 x1073
_odoss
0.1422 ~ > Mz ANS.

23.12. Critical or Whirling Speed of a Shaft

In actual practice, a rotating shaft carries different mountings and accessories in the form
of gears, pulleys, etc. When the gears or pulleys are put on the shaft, the centre of gravity of the
pulley or gear does not coincide with the centre line of the bearings or with the axis of the shaft,
when the shaft is stationary. This means that the centre of gravity of the pulley or gear is at a
certain distance from the axis of rotation and due to this, the shaft is subjected to centrifugal force.
This force will bent the shaft which will further increase the distance of centre of gravity of the
pulley or gear from the axis of rotation. This correspondingly increases the value of centrifugal
force, which further increases the distance of centre of gravity from the axis of rotation. This effect
is cumulative and ultimately the shaft fails. The bending of shaft not only depends upon the value
of eccentricity (distance between centre of gravity of the pulley and the axis of rotation) but also
depends upon the speed at which the shaft rotates.

The speed at which the shaft runs so that the additional deflection of the shaft from
the axis of rotation becomes infinite, is known as critical or whirling speed.

. Rotor I Rotor
ne T
| Shaft axis /__T___'L____§
\Vi y |o [ \V4 v |©
Ay A [+t
r? Shaftaxis ¥ (03 Axis of rotation
|
B 1
Fe
(a) When shaft is stationary. (b) When shaft is rotating.

Fig. 23.14. Critica or whirling speed of a shaft.

Consider a shaft of negligible mass carrying arotor, as shown in Fig.23.14 (a). The point
O is on the shaft axis and G is the centre of gravity of the rotor. When the shaft is stationary, the
centre line of the bearing and the axis of the shaft coincides. Fig. 23.14 (b) shows the shaft when
rotating about the axis of rotation at a uniform speed of w rad/s.
Let m = Mass of the rotor,
e = Initial distance of centre of gravity of the rotor from the centre
line of the bearing or shaft axis, when the shaft is stationary,
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y = Additional deflection of centre of gravity of the rotor when
the shaft starts rotating at w rad/s, and

s = Stiffness of the shaft i.e. the load required per unit deflection
of the shaft.

Since the shaft is rotating at « rad/s, therefore centrifugal force acting radially outwards
through G causing the shaft to deflect is given by

Fc = ma? (y +e)
The shaft behaves like a spring. Therefore the force resisting the deflection vy,

= S-y
For the equilibrium position,

m.ooz(y +e) =sy

or mo’.y+mof.e =sy or y(s-mof) =mds.e
_ mwfe _ ofe 0
= = N (
H s-m«? s/m-df
We know that circular frequency,
2
Wy = S or y:ooz—'e ... [ From eqguation (i) ]
m (@n)? —of

A little consideration will show that when w > «y,, the value of y will be negative and the
shaft deflects is the opposite direction as shown dotted in Fig 23.14 (b).
In order to have the value of y aways positive, both plus and minus signs are taken.
2

. yos_ W e ie
(@n)? - of Dwnaz_
HoH HZE

... (Substituting w, =W )
We see from the above expression that when w, = «, the value of y becomes infinite.
Therefore wy isthe critical or whirling speed.
[0  Critical or whirling speed,

= :E:g D —ng

If N, is the critical or whirling speed in r.p.s., then

- 9 _ 04985
21N, —\/g or Ng= 21_[ 5"

where & = Static deflection of the shaft in metres.

Hence the critical or whirling speed isthe same asthe natural frequency of transverse
vibration but its unit will be revolutions per second.
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Notes : 1. When the centre of gravity of the
rotor lies between the centre line of the shaft
and the centre line of the bearing, e is taken
negative. On the other hand, if the centre of
gravity of the rotor does not lie between the
centre line of the shaft and the centre line of
the bearing (as in the above article) the value
of e is taken positive.

2. To determine the critical speed of a
shaft which may be subjected to point loads,
uniformly distributed load or combination of
both, find the frequency of transverse vibration
which is equal to critical speed of a shaft in
r.p.s. The Dunkerley’s method may be used for
calculating the frequency.

3. A shaft supported is short bearings
(or ball bearings) is assumed to be asimply sup-
ported shaft while the shaft supported in long
bearings (or journal bearings) is assumed to
have both ends fixed.

Example 23.5. Calculate the
whirling speed of a shaft 20 mm diameter
and 0.6 mlong carrying a mass of 1 kg at
its mid-point. The density of the shaft ma-

Induction Compression Exhaust

Intake
valve

Fuel injection
and combustion

Diesel engines have several advantages over petrol
engines. They do not need an electrical ignition system;
they use cheaper fuel; and they do not need a
carburettor. Diesel engines also have a greater ability
to convert the stored energy in the fuel into mechanical

energy, or work.
Note : This picture is given as additional information and is
not a direct example of the current chapter.

terial is 40 Mg/m®, and Young’'s modulus is 200 GN/n¥. Assume the shaft to be freely supported.

Solution. Given : d =20 mm =002m ;1 =06m;m =1kg; P = 40 Mg/m®
=40 x 10° g/m® = 40 x 10° kg/m® ; E = 200 GN/m? = 200 x 10° N/m?

The shaft is shown in Fig. 23.15.

We know that moment of inertia of the shaft, 1kg
/-12.6 kg/m
=2 xd? =" 002%*m* A B
64 64
= 7.855 x 10° m* “ 06m >
Since the density of shaft material is 40 x 10° kg/m®, Fig. 23.15

therefore mass of the shaft per metre length,

my = Areax|ength xdensity =%[(0.02)2 x1x40 X10° = 12.6 kg/m

We know that static deflection due to 1 kg of mass at the centre,

and static deflection due to mass of the shaft,

3 3
5= W _ 1x 9.%1(0.6) = 28 x10° m
48El  48x200x10° x7.855 x10
4 4
_ 5wl 5x12.6x9.81(0.6) —0133x102 m

S

T 384El  384x200x10° x7.855 x10™°
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0  Frequency of transverse vibration,

o= 0.4985 + 0.4985
N =
3 6 0.133x107°
S+—>= 6 :
\/ 197 \/28x10 +71.27
:—0'4985 3 = 43.3 Hz
11.52x10™
Let N.= Whirling speed of a shaft.

We know that whirling speed of a shaft in r.p.s. is equa to the frequency of transverse
vibration in Hz , therefore

N, =433 rp.s =433 x 60 = 2598 r.p.m. Ans.

Example 23.6. A shaft 1.5 m long, supported in flexible bearings at the ends carries two
wheels each of 50 kg mass. One wheel is situated at the centre of the shaft and the other at a
distance of 375 mm from the centre towards left. The shaft is hollow of external diameter 75 mm
and internal diameter 40 mm. The density of the shaft material is 7700 kg/m® and its modulus of
elasticity is 200 GN/n?. Find the lowest whirling speed of the shaft, taking into account the mass
of the shaft.

Solution. I =1.5m; m =m, = 50 kg ; 50kg  50kg
d,=75mm=0.075m; d, =40 mm=0.04 m; _.| 0.375 m£0.375m wiunit length
p = 7700 kg/m® ; E = 200 GN/m? = 200 x 10° o Ry
N/m2 A «—— 0.75m —»l °

The shaft is shown in Fig. 23.16. 15m

We know that moment of inertia of the shaft, Fig. 23.16

= T a4 —(d,)40="0O 4 _ 4 _ 6,4
| 64gdl) (d2)*H 64D(0.075) (004 =14x10"°m

Since the density of shaft material is 7700 kg/m?®, therefore mass of the shaft per metre
length,
mg = Area x length x density

_n 2 _ 203 _
= go.o75) (0.04)°HLx7700 = 24.34 kg/m
We know that the static deflection due to aload W
_ Wa’b? _ mgazb2
3El 3Ell
O  Static deflection due to a mass of 50 kg at C,

5 = mga’b® _ 50x9.81(0.375)(1.125)°
3EIl 3x200x10° x1.4 x10™® x1.5

... (Herea=0.375m, and b = 1.125 m)
Similarly, static deflection due to a mass of 50 kg at D

_mga’b® _  50x9.81(0.75)*(0.75)°
3EIl 3x200x10° x1.4 x107® x1.5
...(Herea=b=0.75m)

=70x10°%m

5, =123x10°m
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We know that static deflection due to uniformly distributed load or mass of the shaft,

5 _5 w'_5 2434x981(L5" 55 x 10 mm
° 384 El 384 200x10°x14x10°

... (Substituting, w = mg x g)

We know that frequency of transverse vibration,

04985 0.4985
fn = 5 56x107° "
X
\/ O+ +>  [70x107° +123x107° +207 =0
1.27 1.27
= 32.4 Hz

Since the whirling speed of shaft (N,) in r.p.s. is equal to the frequency of transverse

vibration in Hz, therefore
N, =324rps =324 x 60 = 1944 rp.m. Ans.

Example 23.7. A vertical shaft of 5 mm diameter is 200 mm long and is supported in long
bearings at its ends. A disc of mass 50 kg is attached to the centre of the shaft. Neglecting any
increase in stiffness due to the attachment of the disc to the shaft, find the critical speed of rotation
and the maximum bending stress when the shaft is rotating at 75% of the critical speed. The centre
of the disc is 0.25 mm from the geometric axis of the shaft. E = 200 GN/m?.

Solution. Given: d=5mm=0.005m; | =200 mm=0.2m; m=50kg ; e=0.25 mm
=0.25 x 102 m ; E = 200 GN/m? = 200 x 10° N/m?

Critical speed of rotation
We know that moment of inertia of the shaft,

I =L xd* = T (0.005)* =30.7 x10"2m*
64 64

Since the shaft is supported in long bearings, it is assumed to be fixed at both ends. We
know that the static deflection at the centre of the shaft due to a mass of 50 kg,

we 50%x9.81(0.2)°

= = - > =3.33x10°m
192El  192x200x10” x30.7 x10
. (o W=mg)
We know that critical speed of rotation (or natural frequency of transverse vibrations),
0.4985
=———= =864rps Ans.
3.33x10°°
Maximum bending stress

Let o = Maximum bending stress in N/m?, and

N = Speed of the shaft = 75% of critical speed = 0.75 N, . . . (Given)
When the shaft starts rotating, the additional dynamic load (W,) to which the shaft is
subjected, may be obtained by using the bending equation,
M 9 or M :ﬂ
i1 i1



Chapter 23 : Longitudina and Transverse Vibrations ® 935

We know that for a shaft fixed at both ends and carrying a point load (W, ) at the centre, the
maximum bending moment

M = M
8
1
0 %:g_/['; (e Y, =dl2)
—12
and W, = ol ><§ :0><30.7><10 xi ~0.49 x10°° oN
d/2 | 0.005/2 0.2
00 Additional deflection due to load W,,
-6
y=M, 5204910 10,533,903 23327 102 ¢
W 50x9.81
We know that
+e +e
y = =
N. [ .
[K*)CDZ_ ONeD)_4 . . . (Substituting =N.and w=N)
Jull 7 BNE o
-3
3327x10 2= 02107 _ 1434073
0N, O

0=0.32x1073/3.327x10712 =0.0962 x10°N/m? ..( Taking + ve sign)
= 96.2 x 10° N/m? = 96.2 MN/m? Ans.

Example 23.8. A vertical steel shaft 15 mm diameter is held in long bearings 1 metre
apart and carries at its middle a disc of mass 15 kg. The eccentricity of the centre of gravity of the
disc from the centre of the rotor is 0.30 mm.

The modulus of elasticity for the shaft material is 200 GN/n¥ and the permissible stressis
70 MN/m?. Determine : 1. The critical speed of the shaft and 2. The range of speed over which it
is unsafe to run the shaft. Neglect the mass of the shaft.

VV‘S

[For ashait with fixed end carrying a concentrated load (W) at the centre assume 8 = -,

WA
and M = B where 3 and M are maximum deflection and bending moment respectively].
Solution. Given : d =15 mm =0015m ;| =1m; m=15kg; e = 0.3 mm
= 0.3x 102 m; E=200 GN/m? = 200 x 10° N/m? ; ¢ = 70 MN/m? = 70 x 10° N/m?

We know that moment of inertia of the shaft,
I =L xd% = (0.015)% =2.5x10°m?
64 64

1. Critical speed of the shaft

Since the shaft is held in long bearings, therefore it is assumed to be fixed at both ends. We
know that the static deflection at the centre of shaft,
w3 15x9.81x13

5= = =1.5x10%m e
192El  192x200x10° x2.5x107° (s W=mg)
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O  Natura frequency of transverse vibrations,
_ 04985 _  0.4985

G _\/1.5><10‘3

We know that the critical speed of the shaft in r.p.s. is equal to the natural frequency of
transverse vibrations in Hz.

O Critical speed of the shaft,
N, =12.88 r.p.s. = 12.88 x 60 = 772.8 r.p.m. Ans.

=12.88Hz

fn

2. Range of speed
Let N, and N, = Minimum and maximum speed respectively.

When the shaft starts rotating, the additional dynamic load (W, = m,.g) to which the shaft
is subjected may be obtained from the relation

M:E or M :ﬂ
| Y1 Y1
d
Since v =l _megl . and Yy =—, therefore
8 8 2
al_ol
8 d/2

_8x2x0x| _8x2x70 X10° x2.5 K07
d.gl 0.015x9.81x1

O Additional deflection due to load W, = m g,

or =19kg

y="hu5 =" w5 =12 44 540° 4.9 20°m
W m 15

We know that,
+e y 1
y=——m—5 or + - =—
[0, D2 1 € ON E? -1
HoH ANH
... (Substituting, ®. =N, ,and =N
-3
- . 1.9><10_3 _ 1 or ﬁ&g _1:i§]—§ = +0.16
03x10°  [N,[f N -
HnH
ON, [
=1+0.16=1.16
BWH o 084
... (Taking first plus sign and then negative sign)
N
or N = Ne ——

or
v1.16 v0.84



Chapter 23 : Longitudinal and Transverse Vibrations ® 937

Ny = —==—= =718r.p.m
H N ETIN/E
Ne _ 772.8
Ny = ——= =—= =843 r.p.m.
and 2" Josa Josa

Hence the range of speed is from 718 r.p.m. to 843 r.p.m. Ans.

23.13. Frequency of Free Damped Vibrations (Viscous Damping)

We have already discussed that the motion of a body is resisted by frictional forces. In
vibrating systems, the effect of friction is referred to as damping. The damping provided by fluid
resistance is known as viscous damping.

We have also discussed that in damped
vibrations, the amplitude of the resulting vibration
gradually diminishes. Thisis due to the reason that Spring ﬁ
acertain amount of energy is always dissipated to
overcome the frictional resistance. The resistance
to the motion of the body is provided partly by the Mean position {—- M- - —
medium in which the vibration takes place and
partly by the internal friction, and in some cases

/.

time t [ e '

partly by a dash pot or other external damping l
device. mdx
Consider a vibrating system, as shown in df
Fig. 23.17, in which amass is suspended from one Fig. 23.17. Frequency of free damped
end of the spiral spring and the other end of which vibrations.
is fixed. A damper is provided between the mass
and the rigid support.
Let m = Mass suspended from the spring,

s = Stiffness of the spring,

x = Displacement of the mass from
the mean position at time't,

o = Static deflection of the spring
= m.g/s, and
¢ = Damping coefficient or the damping

force per unit velocity.

Since in viscous damping, it is assumed that the frictional

resistance to the motion of the body is directly proportional to
the speed of the movement, therefore

Damping force or frictional force on the mass acting in

opposite direction to the motion of the mass

=CX—
dt

Accelerating force on the mass, acting along the
motion of the mass

Riveting Machine
d2X Note : This picture is given as
=MX—- additional information and is not a
dt direct example of the current chapter.
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and spring force on the mass, acting in opposite direction to the motion of the mass,
= sX
Therefore the equation of motion becomes

mxd_2x = —D X% +S_X|:|
o O odt o
...(Negative sign indicates that the force opposes the motion)

2
or mxﬂﬂ;xd—x +sx =0
dt? dt

This is a differential equation of the second order. Assuming a solution of the form
x = e where k is a constant to be determined. Now the above differential equation reduces to

O 2 O
K2 1+ C ekt 43 xet =g o OI—X=kek‘,andd—zxzkz.ektlj
or K2+ xk+2 =0 0!
m m
_c, DCDZ_4XE
and k= m B m
2
¢  |ocrf

-_° _S
- 2mi BZTnB m

O The two roots of the equation are

__ ¢ [occf s
= om T Bmd m
q R DCDZ_E
an 2 2m %B m

The most general solution of the differential equation (i) with its right hand side equal to
zero has only complementary function and it is given by

x=Cee +C, ()

where C, and C, are two arbitrary constants which are to be determined from the initial conditions
of the motion of the mass.

It may be noted that the roots k, and k, may be real, complex conjugate (imaginary) or
equal. We shall now discuss these three cases as below :

*

A system described by this equation is said to be a single degree of freedom harmonic oscillator with
viscous damping.
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1. When the roots are real (overdamping)

bc S
55 . . .
If %B -y then the roots k; and k,, are real but negative. Thisis acase of overdamping

or large damping and the mass moves slowly to the equilibrium position. This motion is known as
aperiodic. When the roots are real, the most general solution of the differential equation is

x = Ce' +C,e

gc,fedf sg  pg.c_pen® s,
S H 2m Pomi mJ c e% om \H2nt]
= e =+ )

Note : In actua practice, the overdamped vibrations are avoided.

2. When the roots are complex conjugate (underdamping)

s_Ocrf

If => , then the radical (i.e. the term under the square root) becomes negative.
m~ tmb

The two roots k, and k, are then known as complex conjugate. This is a most practical case of
damping and it is known as underdamping or small damping. The two roots are

and ™ "om m Famb

where i is a Greek letter known asiota and its value is /-1 . For the sake of mathematical calcu-

lations, let
C __.S_ 2. S DCEF_ _[ 2 2
—2 —a,_—((*)n) vand 4| — Bz_ =Wy = (Uﬁ) a

Therefore the two roots may be written as
k=-at+tiay; and ky=-a-iwy
We know that the general solution of a differential equation is
= Cleklt +C, ekt :Cle(—aﬂq,)t +C, i)t
=g d(C et +C, e W) L (Using €M=" x &) ...(iii)
Now according to Euler’s theorem
e"®=cos@+isin® ; and €% =cosB-isin®
Therefore the equation (iii) may be written as
x =€ 2 [Cy(cosuy t +isin oy 1) +Co(cos @t Hsin )]
=e ¥ [(C +Cy)cosuy t + (C; -Cp)sin gy 1)]
Let C,+C,=A and i(C,-C,)=B
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O x =€ (Acoswyt +Bsin uy 1) (V)
Again, let A=Ccos8, and B=Csin6, therefore

C=+A2+B2 ,and tanB=—
Now the equation (iv) becomes
3 (CcosBcoswy t +Csin 5N oy 1)
=Ce ™ cos(uwyt -6 )

If t is measured from the instant at which the mass mis released after an initial displace-
ment A, then

A=CcosH ... [Substituting x = A and t = 0 in equation (V)]
and when 6=0,thenA=C
0 The eguation (v) may be written as

x=Ae ? cosoodt ce (VD)

where Wy = E—DC ,' (*I)l) _a and a__

We see from equation (vi), that the motion of the mass is simple harmonic whose circular

damped frequency is wy and the amplitude is Ae™? ' which diminishes exponentially with time as
shown in Fig. 23.18. Though the mass eventually returns to its equilibrium position because of its
inertia, yet it overshoots and the oscillations may take some considerable time to die away.

—»4—14>‘

Exponent|al decreasing curve

2 /\3\‘ ________ Mean position

le—— X —»l

——Displacement—>

Fig. 23.18. Underdamping or small damping.
We know that the periodic time of vibration,

_2m _ 21 _ 2T

p_(‘“’_d_\/s_DcD2 _\/((*)n)z_

m m

and frequency of damped vibration,

1 oy 1 >3 1 |s Ocrf
fy=—=—"42 =" —. - — |2 ..
d t, 2n 2n ()" -a >ilm ‘%H e (vid)
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Note : When no damper is provided in the system, then ¢ = 0. Therefore the frequency of the undamped

vibration,
e
2rm\m

.. . [Substituting ¢ = 0, in equation (vii)]
It is the same as discussed under free vibra-
tions.

3. When the roots are equal (critical damping)

f_s

gc _ . e
If BZTnB = then the radical becomes

zero and the two roots k, and k, are equal. Thisisa
case of critical damping. In other words, the critical -

damping is said to occur when frequency of dam In a disc brake, hydraulic pressure forces
vibration (f,) is zero (i.e. motion is aperiodic). This fiction pads to squeeze a metal disc that
type of damping is also avoided b se the mass rotates on the same axle as the wheel.

back idl . ilibri ” - Here a disc brake is being tested.
moves back rapidly to its equilibrium position, In Note : This picture is given as additional information

the shortest possible time. and is not a direct example of the current chapter.
For critical damping, equation (ii) may be
written as
—Lt ot |:|. c _|s_ O
x=(C1+Cp)e 2m =(Cy +Cp)e *h g E_%E

Thus the motion is again aperiodic. The critical damping coefficient (c.) may be obtained
by substituting c, for ¢ in the condition for critical damping, i.e.

S%EZ:% or cC:Zm\/%:me%

The critical damping coefficient is the amount of damping required for a system to be
critically damped.

23.14. Damping Factor or Damping Ratio
The ratio of the actual damping coefficient (c) to the critical damping coefficient (c) is
known as damping factor or damping ratio. Mathematically,

Damping factor =c-_¢ (g E2ny)
Cc  2mauy,
The damping factor is the measure of the relative amount of damping in the existing system
with that necessary for the critical damped system.

23.15. Logarithmic Decrement

It is defined as the natural logarithm of the amplitude reduction factor. The amplitude
reduction factor istheratio of any two successive amplitudes on the same side of the mean position.

If x, and x, are successive values of the amplitude on the same side of the mean position,
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as shown in Fig. 23.18, then amplitude reduction factor,

xw _ A ay

% —W =€ " = congtant

wheret, isthe period of forced oscillation or the time difference between two consecutive amplitudes.
As per definition, logarithmic decrement,

Oy, O
5 =logiLh=loge™
X0

Ux O 2 ax2
or 5:|09e[1—l|:|:a-tp =a x_T[ = n

0 g J(w,)? —a?

L><21T %2
= 2m Salall (o c=2mouy)
Oc¢ O 0 co®
Why[1- 0 cylo-g
mao, 0¢d
_ 2mxc
J(@)?-c
In general, amplitude reduction factor,
T constant
X0X3 X Xn+1

O  Logarithmic decrement,

2TTIXC

Ox, O
d=loge - =at, =————x-—
Xn+10 P 1/((;C)2 —c?

Example 23.9. A vibrating system consists of a mass of 200 kg, a spring of stiffness
80 N/mm and a damper with damping coefficient of 800 N/nvs. Determine the frequency of vibration
of the system.

Solution. Given : m= 200 kg ; s= 80 N/mm = 80 x 10° N/m ; ¢ = 800 N/m/s

We know that circular frequency of undamped vibrations,

s [80x10°
= |— = = 20 rad/s
“n \/m \I 200
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and circular frequency of damped vibrations,

g :\/(Oth)2 -a? :\/( w)? c/2m)? ...(a=c/2m)

= (20 - (800/2x200)2 =199 radis
0 Frequency of vibration of the system,
fg =y /2m=19.9/2 1= 3.17 Hz Ans.

Example 23.10. The following data are given for a vibratory system with viscous damp-

ing:
’ Mass = 2.5 kg ; spring constant = 3 N/mm and the amplitude decreases to 0.25 of the

initial value after five consecutive cycles.

Determine the damping coefficient of the damper in the system.

Solution. Given: m=25kg ; s= 3 N/mm = 3000 N/m ; X, = 0.25 X,

We know that natural circular frequency of vibration,

s _ [|3000

wh = E_ 2—5 = 34.64 rad/s

Let ¢ = Damping coefficient of the damper in N/m/s,

X, = Initial amplitude, and

X = Final amplitude after five consecutive cycles = 0.25 x; ...(Given)
We know that

X _ X
X X3

& [&
& |

Pty

%% X % D

X X X3 X X X X0
/5

ﬁ_DXlD‘l O Xl |jl/5

0 el =(@Y° =132
X O  [0-25%0

or

O

We know that
Ox, O 21

loge G—O=2ax
%20 (wy)? a2

2
loge(132) =ax——=" _  or 02776 = 2X21

\(34.64)2 - a2 V1200- a2

Squaring both sides,

39.5a2

0.077 = o0 or  92.4-0.077a% =39.5a2

0 a2=2335 o a=153
We know that a=c/2m or c=ax2m= 153x2x25=7.65N/m/s Ans.
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Example 23.11. An instrument vibrates with a frequency of 1 Hz when there is no damping.
When the damping is provided, the frequency of damped vibrations was observed to be 0.9 Hz
Find 1. the damping factor, and 2. logarithmic decrement. -""i. .

Solution. Given : f, = 1Hz; f; =09 Hz
1. Damping factor
Let m = Mass of the instrument in kg,

¢ = Damping coefficient \
or damping force per unit
velocity in N/m/s, and
c.= Critical damping coefficient in
N/m/s. Guitar
We know that natura circular frequency of undamped vibrations,
w, =21xf, =2t 6.284 rad/s
and circular frequency of damped vibrations,
Wy =21xfqy =2 %.9 5.66 rad/s
We also know that circular frequency of damped vibrations ( wy ),
5,66 = \/(con)? ~a2 =y/(6.284) -
Squaring both sides,
(5.66)% = (6.284)? — a or 32 = 39.5 — a°
0 a’=75 or a=274
We know that, a=c/2m or c=ax?2m= 274 x 2m=5.48 m N/m/s
and Cc =2muy, =2m x6.284 = 12.568 m N/m/s
0 Damping factor,
c/c. =5.48m/12.568m = 0.436 Ans.
2. Logarithmic decrement
We know that [ogarithmic decrement,
21C _ 211>6.48m _344
= =3.04 Ans.

_\/(cc)z—cz _\/(12.568m)2—(5_48m)2 11.3

Example 23.12. The measurements on a mechanical vibrating system show that it has a
mass of 8 kg and that the springs can be combined to give an equivalent spring of stiffness
5.4 N/mm. If the vibrating system have a dashpot attached which exerts a force of 40 N when the
mass has a velocity of 1 nvs, find : 1. critical damping coefficient, 2. damping factor, 3. logarithmic
decrement, and 4. ratio of two consecutive amplitudes.

Solution. Given: m=8kg ; s= 5.4 N/mm = 5400 N/m

Since the force exerted by dashpot is 40 N, and the mass has a velocity of 1 m/s, therefore

Damping coefficient (actual),

¢ =40 N/m/s
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1. Critical damping coefficient
We know that critical damping coefficient,

/5400
Ce = 2mwy, =2m x\/g =28 3 - 416 N/m/s Ans.

We know that damping factor

2. Damping factor

40
=2 == - 0096 Ans
c. 416
3. Logarithmic decrement
We know that [ogarithmic decrement,
5= 211C _ 2140 06 A
= = = 0.6 Ans.
Y- (416) -(40)?
4. Ratio of two consecutive amplitudes
Let X, and x ., = Magnitude of two consecutive amplitudes,
We know that logarithmic decrement,
Ox O 0 % _ 5 06 —
o =log pgor —-=¢” =(2.7)"° =182 Ans.
¢ EHD Xn+1

Example 23.13. A mass suspended from a helical
spring vibrates in a viscous fluid medium whose resistance
varies directly with the speed. It is observed that the frequency
of damped vibration is 90 per minute and that the amplitude
decreases to 20 % of itsinitial valuein one complete vibration.
Find the frequency of the free undamped vibration of the
system.

Solution. Given : f; = 90/min = 90/60 = 1.5 Hz
We know that time period,

t, = Vfy= U15=067s Helical spring suspension of a

Let x, = Initial amplitude, and two-wheeler.
. . Note : This picture is given as
X, = Final amplitude after one  qditional information and is not a

complete vibration direct example of the current chapter.
=20% x, = 0.2 X,
... (Given)
We know that

Ox, O O x O
loge 20=at, or log 1 A=ax067
‘el " °H.2x1

O log,5=0.67a or 161=067ao0r a=24 ...(- log,5=161)
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We also know that frequency of free damped vibration,
1
fq :E_[\/(wn)z -a?

or ((L)n)z :(21T><fd)2 +a? .. . (By squaring and arranging)
= (2nxL5)? H2.4)> =94.6
O w, =9.726 rad/s

We know that frequency of undamped vibration,
_w, _9.726

fo="T="" =
N oo o 1.55 Hz Ans.

Example 23.14. A cail of spring stiffness 4 N/mm supports vertically a mass of 20 kg at
the free end. The motion is resisted by the oil dashpot. It is found that the amplitude at the beginning
of the fourth cycle is 0.8 times the amplitude of the previous vibration. Determine the damping
force per unit velocity. Also find the ratio of the frequency of damped and undamped vibrations.

Solution. Given : s=4 N/mm = 4000 N/m ; m = 20 kg
Damping force per unit velocity
Let ¢ = Damping force in newtons per unit velocity i.e. in N/m/s
X, = Amplitude at the beginning of the third cycle,
X1 = Amplitude at the beginning of the fourth cycle = 0.8 X,
... (Given)
We know that natura circular frequency of motion,

s _ [4000
=, |= === =14.14 radis
SRERNE
om

0 x, O
and 10ge (——[]= aX—————
n +1|:| ¢(wn)2 _a2

O x, O 21
or 10ge G——[= aX————
080  \/14.14)% - a2

logel25=ax—20 _  or 0223=ax_2"

V200-a? \200- a2

Squaring both sides

a? x4 _ 39.5a°

0.05= =
200-a% 200-a?
0.05 x 200 — 0.05 a® = 39.5a° or  39.55a?=10
O a®=10/3955=025 or a=05
We know that a=c/2m
0 c=ax2m=0.5x2 x 20 =20 N/m/s Ans.
Ratio of the frequencies
_ o Wd
Let fn, = Frequency of damped vibrations =

21
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Wn

fno = Frequency of undamped vibrations = =

0y 2wy :\/(%)2 -a° :J(14.14)2 -(0.5)?
® 14.14

: ( wy =) —a2)
=0.999 Ans

Example 23.15. A machine of mass 75 kg is mounted on springs and is fitted with a
dashpot to damp out vibrations. There are three springs each of stiffness 10 N/mm and it is found
that the amplitude of vibration diminishes from 38.4 mm to 6.4 mm in two complete oscillations.
Assuming that the damping force varies as the velocity, determine : 1. the resistance of the dash-
pot at unit velocity ; 2. the ratio of the frequency of the damped vibration to the frequency of the
undamped vibration ; and 3. the periodic time of the damped vibration.

Solution. Given: m=75kg; s=10 N/mm = 10 x10° N/m ; X; =38.4 mm = 0.0384 m;
X3 = 6.4 mm = 0.0064 m

Since the stiffness of each spring is 10 x 10° N/m and there are 3 springs, therefore total
stiffness,

s=3x10x10% =30 x10°> N/m
We know that natura circular frequency of motion,

[s /30><1o3
= |= = =20
Wy - 3 rad/s

1. Resistance of the dashpot at unit velocity
Let ¢ = Resistance of the dashpot in newtons at unit velocity i.e. in
N/m/s,
X, = Amplitude after one complete oscillation in metres, and
X, = Amplitude after two complete oscillations in metres.

X _ X

We know that X X
0 0
; P x SRR TN N s Vet
Epyl T % H e X X3 X X% X0

%20 3

. % 0" _roosead? )
X2 30 J0.0064
We also know that
21

Ox, O
|oge (= aX————
D0 (wy)? -&?
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Ioge 245= axL
J(20)% -a?
ax 2t a®x39.5 . .
0.89%51=——— or 08=—"" ... (Squaring both sides)
\400-a? 400-a?

0 a? =794 o a=28
We know that a=c/2m
O c=ax2m= 28 x 2 x 75 =420 N/m/s Ans.

2. Ratio of the frequency of the damped vibration to the frequency of undamped vibration
Let fq = Frequency of damped vibration = %

W,
fno = Frequency of undamped vibration = Zr_'[

0 a2 S o BV S S ¢ B = =0.99 Ans.
fo 2 @ o W 20

3. Periodic time of damped vibration
We know that periodic time of damped vibration

2n 2T 2T

@ J@? 2 20?287

Example 23.16. The mass of a single degree damped vibrating systemis 7.5 kg and makes
24 free oscillations in 14 seconds when disturbed from its equilibrium position. The amplitude of
vibration reduces to 0.25 of its initial value after five oscillations. Determine : 1. stiffness of the
spring, 2. logarithmic decrement, and 3. damping factor, i.e. the ratio of the system damping to
critical damping.

Solution. Given: m= 7.5 kg

Since 24 oscillations are made in 14 seconds, therefore frequency of free vibrations,

=0.32 sAns.

f,=24/14=17
and w, =2ntxf, =2 mn4.7 40.7 rad/s
1. Stiffness of the spring
Let s= Stiffness of the spring in N/m.

We know that ((Jon)2 =s/m or s= (oon)zm =(10.7)?7.5 = 860 N/m Ans.

2. Logarithmic decrement

Let X, = Initial amplitude,
Xs = Final amplitude after five oscillations = 0.25 x; ... (Given)
%K% e 06 6T 0on % x _xD

0
x6x2x3x4x5xegx2% O X X X X X[
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/5 /5
% Ux D1 O x D1
A-52n L =@Y5=13
X ed  [025%0

We know that logarithmic decrement,

or

0 =loge %X—lg =10ge1.32 = 0.28 Ans.
X0
3. Damping factor
Let ¢ = Damping coefficient for the actual system, and
c. = Damping coefficient for the critical damped system.
We know that logarithmic decrement (),

028 = ax 21 _ ax2T1
Jn?-a2 @072 -a?
a®x39.5
0.0784 = T145-a2 ... (Squaring both sides)
8977 -0.0784a=395a° or a®=0227 or a=0476
We know that a=c/2m oo c=ax2m=0476x2x75=7.2N/m/sAns.
and C. =2mauy, =2 x7.5x10.7 = 160.5 N/m/s Ans.
O Damping factor = c/c, = 7.2/ 160.5 = 0.045 Ans.

23.16. Frequency of Under Damped Forced Vibrations

Consider a system consisting of spring, mass and
damper as shown in Fig. 23.19. Let the system is acted
upon by an external periodic (i.e. simple harmonic)

disturbing force, Spring
Fyx = F cost
where F = Static force, and Mean position
w=Angular velocity of s.x c =
¥ T Y . Position after - -l----. dtT_i(
the periodic disturbing time t oo _'_1!7_'_ A
' force.. ' | o ox
When the system is constrained to move in vertical df
guides, it has only one degree of freedom. Let at sometime Fig. 23.19. Frequency of under
t, the mass is displaced downwards through a distance x damped forced vibrations.

from its mean position.
Using the symbols as discussed in the previous article, the equation of motion may be
written as

2
mxﬂ =-C x% —-sXx +Fcos wt
dt? d
2
or mxﬂ+cx%+sx:Fcoswt ()
dt? dt
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This equation of motion may be solved either by differential equation method or by graphi-
cal method as discussed below :
1. Differential equation method

The equation (i) is a differential equation of the second degree whose right hand side is
some function in t. The solution of such type of differential equation consists of two parts ; one
part is the complementary function and the second is particular integral. Therefore the solution
may be written as

X=X, + X%,
where X, = Complementary function, and
X, = Particular integral.
The complementary function is same as discussed in the previous article, i.e.

¥ = Ce ™ cos(wyt -9 ... (i)

where C and @ are constants. Let us now find the value of particular integral as discussed below :
Let the particular integral of equation (i) is given by

Xo = By sinwt +B, cos ot ... (where B, and B, are constants)
dx .
O . B,.wcos wt —B,. usin ol
L 3
and ?:—Bl. sin wt —B,. Wcos w
t

Substituting these values in the given differential equation (i), we get
m(-BL.o’ sin wt —B,. 5 c0s o) €(B. ©0s ® B,. &N t) (B Sn i Bycos
= F coswit
or (-mB.of —c.wB, +sB))sin uf { M AB, € B $B,)c0S t
= F coswit

or gs—mwz)Bl—c.szEsin af He.uBy «s m &))Bg cos

= F coswt +0sin wt
Comparing the coefficients of sin wt and cos wt on the left hand side and right hand side
separately, we get

(s-mu’)B, —c.wB, =0 ... (iii)
and cwB; +(s-muf)B, =F )
Now from equation (iii)
(s—mooz)Bl =c.wB,
_s—ma? o
O B, = P B )]

Substituting the value of B, in equation (iv)
(s— mwz) (s—m o,?)

cwb +
Bl C.w

><B_l =F
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2w’ B, +(s-mof)?B, =c. F

B B:Z.coz +(s —mu?)zg =Cc. uF

0 _ cwF
2w’ +(s —m.of)2
s—may’ c.wF
and B, = X @ ... [From equation (V)]

cw 2o +(s-maf)?

F (s-ma?)
267 +(s -mf)?
0  The particular integral of the differential equation (i) is
Xo = By sinwt +B, cos wt

= cwF xsin ot + F(s-m) xCOS G
2o +(s-maf)? .8 s m )
F

"= py— LEwsinat s -m 3) cos ad (i)

Let cw=Xsing and s-maf =X cos @

O X = \/cz_mz +(s -mo§)? .. . (By squaring and adding)

P T o
This machine performs pressing operation, welding operation and material handling.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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and tan @ =—2 or @ —tan 15 GO E
s—-maf Os-ma’ 0
Now the equation (vi) may be written as
F . .
Xo = Xsin@sin ot +X cos (€os
2o +(s —m.u?)z[ 9
F.X
= xcos(wt — ¢
c?w’ +(s —m(x?)2
_ F\/c +(s-maf)? xcos(wt - Q
c?.o’ +(s-m 03)
F xcos(wt — ¢

\/c2 W +(s—-m. )2
0  The complete solution of the differential equation (i) becomes
X=X+ X,
F
\/ c?.of +(s-m )2
In actual practice, the value of the complementary function x, at any timet is much smaller

as compared to particular integral x,. Therefore, the displacement x, at any timet, is given by the
particular integral x, only.

=C.e *cos(ayt - xcos( i -

0 F xcos(cot - ¢ .. (vi)

\/ c2o? +(s-mof)?
This equation shows that motion is simple harmonic whose circular frequency is  and the
F

\/cz.oo2 +(s —m.o@)2 .

A little consideration will show that the frequency of forced vibration is equal to the angular
velocity of the periodic force and the amplitude of the forced vibration is equal to the maximum
displacement of vibration.

O  Maximum displacement or the amplitude of forced vibration,
. = F
max —
\/Cz_wz +(s-mof)? .. (viii)

Notes: 1. The equations (vii) and (viii) hold good when steady vibrations of constant amplitude takes
place.

amplitude is

2. Theequation (viii) may be written as
Yo = Fl/s
\/cz.ooz +(s—m03)2

s s?

. (Dividing the numerator and denominator by s)
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- Xo

\/ El meEZ .. . (Substituting F/s = x)

where x, is the deflection of the system under the static force F. We know that the natural frequency of free
vibrations is given by

(u)n)2 =s/m
Xmax = ] D2
2
0 C;’2+D— ‘*’22 LX)
s El (wn) H
3. When damping is negligible, then ¢ = 0.
o= Yo - X% (@n)° _ % xs/m
O 1_L22 (@)?-& (@) -@ g. ()2 =S/"E
(wn)
_ F
0 mgmn)2 —u% oo (v F=x8) - - (0

4. At resonance w = ), . Therefore the angular speed at which the resonance occurs is

S
W=0} :\/% rad/s

and Xmax = Xo X

IE I
cox [From equation (ix)]
2. Graphical method

The solution of the eguation of motion for a forced and damped vibration may be easily
obtained by graphical method as discussed below :

Let us assume that the displacement of the mass (m) in the system, as shown in Fig. 23.19,
under the action of the applied simple harmonic force F cos it is itself simple harmonic, so that
it can be represented by the equation,

x = Acos(wt — @
where A is the amplitude of vibration.

Now differentiating the above equation,

%:—mAsin(ux -® =uAcos[90 °t ® -)%
2
and d__-u)2 Acos(ut - = A.Acos[180 °€ ® -

dt?
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O Elastic force i.e. the force required to extend the spring

=sx =sAcos(wt - ¢
Disturbing force i.e. the force required to overcome the resistance of dashpot

:CX% =c.wACos[90°+( ot — ¢

and inertia force i.e. the force required to accelerate the mass m
2

= mx 82X = m . Acos[180° +( -3
dt

mo°A \-" SA  (ot-¢)

ot F ot

(@ (b)
Fig. 23.20. Graphical method.

The algebraic sum of these three forces at any given instant must be equal to the applied
force F coswt . These forces are represented graphically in Fig. 23.20 (a). The vector OP repre-
sents, to some suitable scale, the elastic force (of maximum value s.A), at an inclination (wt — @
to the vertical. The vector OQ (of maximum value cw.A) and vector OR (of maximum value
moozA) represents, to the same scale, the disturbing force and inertia force respectively. The vec-
tors OP, OQ and OR are at successive intervals of 90°.

The projected lengths Op, Oqg and Or represent the instantaneous values of these forces at
time t and Os (the algebraic sum of Op, Og and Or) must represent the value F cos it of the
applied force at the same instant. Thus the force vector OS must be the vector sum of OP, OQ and

OR or force F must be the vector sum of s.A, cwA and mooz.A, as shown in Fig. 23.20 (b). From
the geometry of the figure,

F =oc =4/(od)2 +(cd)? =y/(0a -ad)? +(cd)?

= JsA-mP.A2 +c.wh)? =AJ(s m B)? €2 &

O A(Or Xax) = F . . . (Same as before)

\/(s— maf)? +c2.of

g . (p_cd _ cwA ¢l
an ang=— =
od sA-mw?A s-mdf

... (Same as before)
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23.17. Magnification Factor or Dynamic Magnifier

It is the ratio of maximum displacement of the forced vibration (x ... ) to the deflection
due to the static force F(x_). We have proved in the previous article that the maximum displace-
ment or the amplitude of forced vibration,

_ Xo
Xmax =
cz.oonrD L of ,@2
2 2
S (wn) E
11
10
2(e
gllllE 180°
9 S8 PP P SR
o o | ..o
8 ZI \Z -1160°
7 3 140°
5 é=0.1 =
g6 A 120°
5
5 5 C \ 100°
2 —:0.2__‘[‘,/1
c Ce B
S 4 “ 80°
3 C - 60°
sl
1 — < 20°
0 fzzzzZfii--- ] \00
0 02 04 06 08 10 12 14 16 18 20

Phase lag (¢)

Fig. 23.21. Relationship between magnification factor and phase angle for different values of w/ wy,.

O

Magnification factor or dynamic magnifier,

D:XmaX: 1
%o w? O of f
2 "Bt
~ 1
_ DZc.ooD2 0 of
eond "1 @02l
e
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The magnification factor or dynamic magnifier gives the factor by which the static deflection
produced by aforce F (i.e. x,) must be multiplied in order to obtain the maximum amplitude of the
forced vibration (i.e. x_,.) by the harmonic force F cos cat

0 Xmax = %o XD
Fig. 23.21 shows the relationship between the magnification factor (D) and phase angle @
for different value of w/ «}, and for values of damping factor c/c, = 0.1, 0.2 and 0.5.

Notes: 1. If thereis no damping (i.e. if the vibration is undamped), then ¢ = 0. In that case, magnification

factor,
D= Xmax = 1 = (%)2
2
Xo O (2 £ (o) - of
T @h
2. At resonance, W = Gy, . Therefore magnification factor,

D= m = i

Xo Gy

Depending upon the case bridges can be treated as beams subjected to
uniformly distributed leads and point loads.

Example 23.17. A single cylinder vertical petrol engine of total mass 300 kg is mounted
upon a steel chassis frame and causes a vertical static deflection of 2 mm. The reciprocating parts
of the engine has a mass of 20 kg and move through a vertical stroke of 150 mm with simple
harmonic motion. A dashpot is provided whose damping resistance is directly proportional to the
velocity and amounts to 1.5 kN per metre per second.

Considering that the steady state of vibration is reached ; determine : 1. the amplitude of
forced vibrations, when the driving shaft of the engine rotates at 480 r.p.m., and 2. the speed of the
driving shaft at which resonance will occur.

Solution : Given. m=300kg; & =2mm =2x 10°m; m =20 kg ; | = 150 mm
=0.15m; c=15kN/m/s = 1500 N/m/s ; N = 480 r.p.m. or ¢y =21>480/60 = 50.3 rad/s
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1. Amplitude of the forced vibrations
We know that stiffness of the frame,
s=mg/ & =300 x 9.81/2 x 10~ = 1.47 x 10° N/m
Since the length of stroke (1) = 150 mm = 0.15 m, therefore radius of crank,
r=1/2=015/2=0.075m
We know that the centrifugal force due to the reciprocating parts or the static force,
F= ml.ooz.r = 20 (50.3)? 0.075 = 3795 N
0 Amplitude of the forced vibration (maximum),
Xmax = F
\/cz.wz +(s-mof)?
_ 3795
J(1500)2(50.3)2 +[1.47 x10° ~300(50.3)2]2

_ 3795 _ 3719%5  _ 53x103 m
J5.7%x10° +500x10°  710x10°
=53 mm Ans.
2. Speed of the driving shaft at which the resonance occurs
Let N = Speed of the driving shaft at which the resonance occurs in

r.p.m.
We know that the angular speed at which the resonance occurs,

/ 6
wW=w, = S = —1'47x10 =70 rad/s
m 300

0 N = wx60/2 1T =70 60/ 2 11= 668.4 r.p.m. Ans.

Example 23.18. A mass of 10 kg is suspended from one end of a helical spring, the other
end being fixed. The stiffness of the spring is 10 N/mm. The viscous damping causes the amplitude
to decrease to one-tenth of the initial value in four complete oscillations. If a periodic force of
150 cos 50 t N is applied at the mass in the vertical direction, find the amplitude of the forced
vibrations. What is its value of resonance ?

Solution. Given: m=10kg; s =10 N/mm = 10 x 10° N/m ; XSZ%

Since the periodic force, F, = F coswt =150c0s50t , therefore

Static force, F=150N
and angular velocity of the periodic disturbing force,
w=50rad/s

We know that angular speed or natural circular frequency of free vibrations,

/ 3
w, = /3 - [1Ox10° _ 31.6 rad/s
m 10
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Amplitude of the forced vibrations

Since the amplitude decreases to 1/10th of the initial value in four complete oscillations,
therefore, the ratio of initial amplitude (x,) to the final amplitude after four complete oscillations
(Xs) is given by

4
0 0
ﬁ:ﬁxﬁxﬁxﬁzgx_ﬂ] 0 ﬁ_ﬁ:é:ﬁm
X5 X X3 X X X0 O % X% X% X0

y4 14
X _x Hox O s 0

—= == =F— =(10 =1.78 =4
O Xy |:|X5E Dxlllog (10 BXS 105

We know that
Ox, O 21
|oge = aX——
%20 (wn)z _a2

loge1.78 = ax or 0576 =

21 ax2m
J(31.6)2 - a2

V1000-a?
Squaring both sides and rearranging,

30832a°=332 or a’=8335 or a=2887
We know that a=c/2m or c=ax2m= 2887 x 2 x 10 = 57.74 N/m/s
and deflection of the system produced by the static force F,
x, = F/s = 150/10 x 10° = 0.015 m
We know that amplitude of the forced vibrations,

_ Xo
Xmax_
\/02002+Sr_ of f
s B (w)’B

0.015 _ 0.015

(57.742(50)2 550 ng \/0.083+2.25
(lox10%)? g BleOf

=—"°-98x10"% m=9.8 mm Ans.

Amplitude of forced vibrations at resonance
We know that amplitude of forced vibrations at resonance,

s 10x10°
= %o X—— =0.016 x————— =0.0822 1, =
Xmax = %o cox 5754x316 m = 82.2 mm Ans.
Example 23.19. A body of mass 20 kg is suspended from a spring which deflects 15 mm
under thisload. Calculate the frequency of free vibrations and verify that a viscous damping force
amounting to approximately 1000 N at a speed of 1 nvs is just-sufficient to make the motion

aperiodic.
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If when damped to this extent, the body is subjected to a disturbing force with a maximum
value of 125 N making 8 cycles/s, find the amplitude of the ultimate motion.

Solution . Given: m=20kg; 8 =15mm=0.015m; c=1000 N/m/s; F =125 N ;
f =8 cycles's
Frequency of free vibrations

We know that frequency of free vibrations,

1 [g_1 [981
fo=— —:—4/— = 4.07 Hz Ans.
" on\V s 2m\ 0015 07 Hz Ans

The critical damping to make the motion aperiodic is such that damped frequency is zero,

Ocif_s
m " m

_ IS an? = _ [4.Mg 0. ¢-MmgO
O c=,[—x4m- = /4sm =, |4 x—= xm el
\m v V45 H > %0
= /4x20x9'81x20 =1023 N/m/s
0.015

This means that the viscous damping force is 1023 N at a speed of 1 m/s. Therefore a
viscous damping force amounting to approximately 1000 N at a speed of 1 m/sisjust sufficient to
make the motion aperiodic. Ans.

Amplitude of ultimate motion
We know that angular speed of forced vibration,
w=21txf =2 18 H0.3 rad/s

and stiffness of the spring, s=mg/d = 20 x 9.81/0.015 = 13.1 x 10° N/m
0  Amplitude of ultimate motion i.e. maximum amplitude of forced vibration,

F
)(TTBX =
\/cz.oo2 +(s—-mof)?
_ 125
J(1023)2(50.3)% +[13.1x10° —20(50.3)°]2

) 125 15 .
J2600x10° +1406x10°  63.7x10° — 196> 107 M
=1.96 mm Ans.

Example 23.20. A machine part of mass 2 kg vibratesin a viscous medium. Determine the
damping coefficient when a harmonic exciting force of 25 N results in a resonant amplitude of
12.5 mm with a period of 0.2 second. If the system is excited by a harmonic force of frequency
4 Hz what will be the percentage increase in the amplitude of vibration when damper is removed
as compared with that with damping.

Solution . Given : m=2kg ; F =25 N ; Resonant x_,, = 125 mm = 0.0125 m ;
tp:O.Zs;f:4Hz
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Damping coefficient
Let ¢ = Damping coefficient in N/m/s.
We know that natural circular frequency of the exicting force,
Wy =21t, =210.2 = 3142 rad/s
We also know that the maximum amplitude of vibration at resonance (X, ),

F _ 25 _07%

0.0125 = = =
Cw, €x3142 c

or ¢ = 63.7 N/m/s Ans.

Percentage increase in amplitude

Since the system is excited by a harmonic force of frequency ( f) = 4 Hz, therefore corre-
sponding circular frequency

w=21xf =2 114 25.14 rad/s
We know that maximum amplitude of vibration with damping,
Xmax = F
\/cz.(u2 +(s -mof)?
~ 25
) \/(63.7)2(25.14)2 +[2(31.42)% - 2(25.14)°)?

% (w,)? =s/m or s:m(o;,)zg

25 25

J256x10° +05x108 1749
and the maximum amplitude of vibration when damper is removed,

=0.0143 m =143 mm

F 25 25
Xmax = 5 = > 5o =—-—~ =00352m
mgwn) - (3% 2[(31.42)° —(25.14)%] 710
=35.2mm

0 Percentage increase in amplitude

_35.2-143
14.3
Example 23.21. The time of free vibration of a mass hung from the end of a helical spring
is 0.8 second. When the mass is stationary, the upper end is made to move upwards with a
displacement y metre such that y = 0.018 sin 2 mit, where t is the time in seconds measured from
the beginning of the motion. Neglecting the mass of the spring and any damping effects, determine
the vertical distance through which the mass is moved in the first 0.3 second.

Solution. Given : t;=0.8s;y=0.018 sin 2mt

Let m = Mass hung to the spring in kg, and
s = Stiffness of the spring in N/m.

We know that time period of free vibrations (tp),

=146 or 146% Ans.

m
0.8=2m, |— —= =0.0162
S o BZ
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If x metres is the upward displacement of mass mfrom its equilibrium position after time t
seconds, the equation of motion is given by

2 2
mxﬂ:s(y—x) or mxd—+x y =0.018sin2tt
dt? s dt?

The solution of this differential equation is

OOl8sm2T[t
X = Asin —><t+Bcos
O 21 D2

Hs/mt

. (where A and B are constants)

sn t 4 0.018sin 2mtt
Joowez - S 00162 1-478 x00162
= Asin7.85t + Bcos7.85t +0.05sin 2t ()
Now when t =0, x =0, then from equation (i), B = 0.
Againwhen t=0, dx/dt =
Therefore differentiating equation (i) and equating to zero, we have

dx/dt =7.85Ac0s7.85t +0.05x2T1C0S2 1t =0 ...( B=0)
or 7.85Ac0s7.85t = —0.05x2T1C0os2 1t
0 A=-0.05x2177.85 = -0.04 (e t=0)
Now the equation (i) becomes
x =-0.04sin7.85t +0.05sin 2Tt .o (r B=0) ... (i)

U Vertical distance through which the mass is moved in the first 0.3 second (i.e.
whent = 0.35),

= -0.04sin(7.85x0.3) +0.05sin(211>0.3)

. [ Substituting t = 0.3 in equation (ii)]
= -0.04x0.708 +0.05 x0.951 = -0.0283 +0.0476 =0.0193 m
= 19.3 mm Ans.

23.18. Vibration Isolation and Transmissibility

A little consideration will show that when an
unbalanced machineisinstalled on the foundation, it produces Machine
vibration in the foundation. In order to prevent these vibrations
or to minimise the transmission of forces to the foundation,
the machines are mounted on springs and dampers or on some ~ Spring % Spring
vibration isolating material, as shown in Fig. 23.22. The
arrangement is assumed to have one degree of freedom, i.e. it
can move up and down only.

It may be noted that when a periodic (i.e. simple
harmonic) disturbing force F cos wt is applied to a machine

I F cos ot

Damper

Foundation
Fig. 23.22. Vibration isolation.
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of mass m supported by a spring of stiffness s, then the force is transmitted by means of the spring
and the damper or dashpot to the fixed support or foundation.

The ratio of the force transmitted (F;) to the force applied (F) is known as the isolation
factor or transmissibility ratio of the spring support.

We have discussed above that the force transmitted to the foundation consists of the fol-
lowing two forces :

1. Spring force or elastic force which isequal to s. x_ , and

2. Damping force which is equal to c. w.X .

Since these two forces are perpendicular to one another, as shown in Fig.23.23, therefore

the force transmitted,

SX max

Fr = (S Xmme)? + (€. 0X)?

= Xmax V Sz +C2.())2 COX max F;

0O  Transmissibility ratio,

2 2
g=Fr _ X V8" +0% o Fig. 23.23
F F
We know that
F 0 FO
= xD =—xD R =
Xrax = %o s -~ B %7 5H
_D 2 _ 2w’
O g=—+s2+c2.f =D |1+ -
S S

W D2 U cw_ 2 wd
I L Beez, e
O ®nQ 0o S G WD

We have seen in Art. 23.17 that the magnification factor,

When the damper is not provided, then ¢ = 0, and
1
£ =

Sl ... (i)
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From above, we see that when w/ «}, >1, €is negative. This means that there is a phase
difference of 180° between the transmitted force and the disturbing force (F coscwt) . The value of

w/ w, must be greater than J2 if ¢ isto be less than 1 and it is the numerical value of ¢,

independent of any phase difference between the forces that may exist which is important. It is
therefore more convenient to use equation (ii) in the following form, i.e.

1
&=
(W wy)? -4
Fig. 23.24 is the graph for different values of damping factor c/c_ to show the variation of
transmissibility ratio (&) against the ratio w/ wy, .

... (iii)

1. When w/ wy, =2, then al the curves pass through the point € = 1 for al values of
damping factor c/c. .

11

10 =
=
Q.
9 5
©
[}
8 pd
7 C)|
ﬁ;—?c:OJ
6
c |
% // “\——é:o.z
5 4
A\
'—
s C
£ o5
2 ///\\A'( @
/;7\&
-1 -
~10 ——

Fig. 23.24. Graph showing the variation of transmissibility ratio.
2. When w/ wy, <\/2, then ¢ > 1 for all values of damping factor c/c_. This meansthat the
force transmitted to the foundation through elastic support is greater than the force applied.

3. When w/ wy, >\/2 , then & < 1 for all values of damping factor c¢/c.. This shows that
the force transmitted through elastic support is less than the applied force. Thus vibration isolation

is possible only in the range of w/ oy, >J2 .
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We also see from the curves in Fig. 23.24 that the damping is detrimental beyond

w/ o, >./2 and advantageous only in the region ¢/ oy <2 . It is thus concluded that for the
vibration isolation, dampers need not to be provided but in order to limit resonance amplitude,
stops may be provided.

Example 23.22. The mass of an electric motor is 120 kg and it runs at 1500 r.p.m. The
armature mass is 35 kg and its C.G. lies 0.5 mm from the axis of rotation. The motor is mounted
on five springs of negligible damping so that the force transmitted is one-eleventh of the impressed
force. Assume that the mass of the motor is equally distributed among the five springs.

Determine : 1. stiffness of each spring; 2. dynamic force transmitted to the base at the
operating speed; and 3. natural frequency of the system.

Solution. Given m; = 120 kg; m, =35kg, r = 05mm =5 x 10%m; e=1/11
N = 1500 r.p.m. or w = 2 x 1500/ 60 = 157.1 rad/s ;

1. Stiffness of each spring
Let s = Combined stiffness of the spring in N-m, and

¢ = Natural circular frequency of vibration of the machine in
rad/s.

We know that transmissibility ratio (),

1_ 1 (@) (@)
U g | o ~(@) @57.0° (@)’
o0-1
0Wn O
or 157.0) - (w,)? =11(w,)? or (w,)? =2057 or oy, =4535 rad/s
We know that W, =4/s/my

s=my(w,)? =120 x2057 =246 840 N/m
Since these are five springs, therefore stiffness of each spring
=246 840/5 =49 368 N/m Ans.
2. Dynamic force transmitted to the base at the operating speed (i.e. 1500 r.p.m. or 157.1 rad/s)
We know that maximum unbalanced force on the motor due to armature mass,
F=m,« 0 =350157.1)25x10"* =432 N

O Dynamic force transmitted to the base,

F=¢cF :1_11x432 =39.27 N Ans

3. Natural frequency of the system
We have calculated above that the natural frequency of the system,

w, =45.35 rad/s Ans.
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Example 23.23. A machine has a mass of 100 kg and unbalanced reciprocating parts of
mass 2 kg which move through a vertical stroke of 80 mm with simple harmonic motion. The
machine is mounted on four springs, symmetrically arranged with respect to centre of mass, in
such a way that the machine has one degree of freedom and can undergo vertical displacements
only.

Neglecting damping, calculate the combined stiffness of the spring in order that the force
transmitted to the foundation is 1/ 25 th of the applied force, when the speed of rotation of ma-
chine crank shaft is 1000 r.p.m.

When the machine is actually supported on the springs, it is found that the damping reduces
the amplitude of successive free vibrations by 25%. Find : 1. the force transmitted to foundation at
1000 r.p.m., 2. the force transmitted to the foundation at resonance, and 3. the amplitude of the
forced vibration of the machine at resonance.

Solution. Given : m; = 100 kg ; m, =2 kg ;1 =80 mm =008 m; e =1/25;
N = 1000 r.p.m. or ¢y =21x000/60 = 104.7 rad/s
Combined stiffness of springs

Let s = Combined stiffness of springs in N/m, and

wy, = Natural circular frequency of vibration of the machinein rad/s.
We know that transmissibility ratio (),

11 (@) (w)?
B g | o -(w)? 0477 (w)
o0 -1
(%0
or 104.7)% = (w,)? =25(w)>  of  (w,)? =421.6 or w, =20.5 rad/s
We know that W, =4/s/my
O s=m (a},)? =100 x421.6 = 42 160 N/m Ans.
1. Force transmitted to the foundation at 1000 r.p.m.
Let F; = Force transmitted, and

X, = Initial amplitude of vibration.

Since the damping reduces the amplitude of successive free vibrations by 25%, therefore
final amplitude of vibration,

X2 = 0'75Xl
We know that
Ox, O ax2m O O 2
10ge 0= e Of  loge (et axen

07541 V4216 -a?

a2 x 418 39.5a2

> or 0.083= >
4216-a 4216-a

%20 (wn)z _a2
Squaring both sides,

(0.2877)? =

g

] 010 B
B IOQE%H—I0961.333-0.287ﬁ

35-0.083a% =39.5a° or a?=0884 o a=09
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We know that damping coefficient or damping force per unit velocity,
c=ax2m =0.94 x2 x100 = 188 N/m/s
and critical damping coefficient,
C. =2m.a}, =2 x100 x20.5 = 4100 N/m/s
0 Actual value of transmissibility ratio,
O2c.w f
D*D
[Cc-Wh
02c.w f O of f
ol e
(wn)

e -Gh [
\/1 P x188x104.7(F

+
4100x205 JTom
px188x104.7F q1oa72d 022+629

H a100x205 H E—H 20.5 E

1+

- 1104 _
25.08
We know that the maximum unbalanced force on the machine due to reciprocating parts,
F=my.ofr =2(1047)2(0.08/2) =877 N ... (.- r=1/2)
O  Force transmitted to the foundation,
Fr =eF =0.044x877 = 38.6 N Ans. (e e=RIF)

2. Force transmitted to the foundation at resonance

Since at resonance, w = &}, therefore transmissibility ratio,

DZC [Qxlssmz
Fa100Y _ J1+0.0084 1092

o H 4100 H

and maximum unbalanced force on the machine due to reciprocating parts at resonance speed wy, ,

F =m, (oy,)%r =2(205)%(0.08/2) =336 N ... (= r=1/2)
0  Force transmitted to the foundation at resonance,
Fr =eF =10.92%33.6 =367 N Ans.
3. Amplitude of the forced vibration of the machine at resonance

We know that amplitude of the forced vibration at resonance

Force transmitted at resonance _ 367
Combinedstiffness 42160

=8.7x10°3 m

= 8.7 mm Ans.
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Example 23.24. A single-cylinder engine of total mass 200 kg is to be mounted on an
elastic support which permits vibratory movement in vertical direction only. The mass of the piston
is 3.5 kg and has a vertical reciprocating motion which may be assumed simple harmonic with a
stroke of 150 mm. It is desired that the maximum vibratory force transmitted through the elastic
support to the foundation shall be 600 N when the engine speed is 800 r.p.m. and less than this at
all higher speeds.

1. Find the necessary stiffness of the elastic support, and the amplitude of vibration at 800
r.p.m., and

2. If the engine speed is reduced below 800 r.p.m. at what speed will the transmitted force
again becomes 600 N?

Solution. Given: m, =200kg; m,=3.5kg; | =150 mm=0.15mmorr =1/2=0.075m;
F; =600 N ; N =800 rpm. or w=21m>800/60 = 83.8 rad/s
We know that the disturbing force at 800 r.p.m.,
F = Centrifugal force on the piston

=m,.w’r =35 (83.8)0.075 = 1843 N

1. Stiffness of elastic support and amplitude of vibration
Let s = Stiffness of elastic support in N/m, and
X ox = Max. amplitude of vibration in metres.

Since the max. vibratory force transmitted to the foundation is equal to the force on the
elastic support (neglecting damping), therefore

Max. vibratory force transmitted to the foundation,
F; = Force on the elastic support
= Stiffness of elastic support x Max. amplitude of vibration

:SXXmax:ern%nz;

- 20
(@)
=SXx F = F2.S o, (U)n)z = SO
me? — S0 mw® -s - B mH
H “mi
1843xs  _  1843s

g 600 = ... (Substituting m = m,)

200(83.8)2 -5 1.4x10° —s

*  The equation (x) of Art. 23.16 is
-
mHen)? - ofH

Since the max. vibratory force transmitted to the foundation through the elastic support decreases at all
higher speeds (i.e. above N = 800 r.p.m. or w = 83.8 rad/s), therefore we shall use

= F
e’ ~()’H

Xmax
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or 840 x 10° — 600 s = 1843 s
0 s = 0.344 x 10° = 344 x 10° N/m Ans.
and maximum amplitude of vibration,
B 1843 1843
> 2 3" 3Mm

mw” -s 200(83.8)° —344 x10 1056 xX10
= 1.745 x 10° m = 1.745 mm Ans.

2. Speed at the which the transmitted force again becomes 600 N

The transmitted force will rise as the speed of the engine falls and passes through reso-
nance. There will be a speed below resonance at which the transmitted force will again equal to

600 N. Let this speed be wy rad/s (or N, r.p.m.).

Xmax =

O  Disturbing force, F =m, (03)?r =3.5(3)20.075 =0.2625( 9)*N

Since the engine speed is reduced below N; = 800 r.p.m., therefore in this case, max,
amplitude of vibration,

F F F

X, = = =
" i @ o)

and Force transmitted = SX———
s—m(wy)
02625(w)”  _  903x10°(w)
344x10° -200(y)? 344 X107 -200( 3)°
... (Substituting m = m,)

O 600 = 344 x10° x

206.4x10° ~120x10° ()? =90.3 X103 () o (wy)? =981
O oy =31.32 rad/s or N;=31.32x60/2m1 =299 rp.m. Ans.

EXERCISES

1 A shaft of 100 mm diameter and 1 metre long is fixed at one end and other end carries a flywheel
of mass 1 tonne. Taking Young's modulus for the shaft material as 200 GN/m?, find the natural
frequency of longitudinal and transverse vibrations. [Ans. 200 Hz ; 8.6 HZ]

2. A beam of length 10 m carries two loads of mass 200 kg at distances of 3 m from each end together
with a central load of mass 1000 kg. Calculate the frequency of transverse vibrations. Neglect the
mass of the beam and take | = 10° mm* and E = 205x10° N/mm?. [Ans. 13.8 HZ]

3. A steel bar 25 mm wide and 50 mm deep is freely supported at two points 1 m apart and carries a
mass of 200 kg in the middle of the bar. Neglecting the mass of the bar, find the frequency of
transverse vibration.

If an additional mass of 200 kg is distributed uniformly over the length of the shaft, what will be
the frequency of vibration ? Take E = 200 GN/m?. [Ans. 17.8 Hz ; 14.6 HZ]

4. A shaft 1.5 m long is supported in flexible bearings at the ends and carries two wheels each of 50
kg mass. One whedl is situated at the centre of the shaft and the other at a distance of 0.4 m from
the centre towards right. The shaft is hollow of external diameter 75 mm and inner diameter 37.5
mm. The density of the shaft material is 8000 kg/m®. The Young's modulus for the shaft material is
200 GN/m2. Find the frequency of transverse vibration. [Ans. 33.2 HZ]
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12.
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16.
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A shaft of diameter 10 mm carries at its centre a mass of 12 kg. It is supported by two short
bearings, the centre distance of which is 400 mm. Find the whirling speed : 1. neglecting the mass
of the shaft, and 2. taking the mass of the shaft also into consideration. The density of shaft material
is 7500 kg/m®. [Ans. 748 r.p.m.; 744 r.p.m]
A shaft 180 mm diameter is supported in two bearings 2.5 metres apart. It carries three discs of
mass 250 kg, 500 kg and 200 kg at 0.6 m, 1.5 m and 2 m from the left hand. Assuming the mass of
the shaft 190 kg/m, determine the critical speed of the shaft. Young’'s modulus for the material of
the shaft is 211 GN/m?. [Ans. 188 r.p.m]
A shaft 12.5 mm diameter rotates in long bearings and a disc of mass 16 kg is secured to a shaft at
the middle of its length. The span of the shaft between the bearing is 0.5 m. The mass centre of the
disc is 0.5 mm from the axis of the shaft. Neglecting the mass of the shaft and taking E = 200
GN/m?, find : 1 critical speed of rotation in r.p.m., and 2. the range of speed over which the stress
in the shaft due to bending will not exceed 120 MN/m?. Take the static deflection of the shaft for a
\/\A 3
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A vertical shaft 25 mm diameter and 0.75 m long is mounted in long bearings and carries a pulley
of mass 10 kg midway between the bearings. The centre of pulley is 0.5 mm from the axis of the
shaft. Find (a) the whirling speed, and (b) the bending stress in the shaft, when it is rotating at 1700
r.p.m. Neglect the mass of the shaft and E = 200 GN/m?. [Ans. 3996 r.p.m ; 12.1 MN/m?
A shaft 12 mm in diameter and 600 mm long between long bearings carries a central mass of 4 kg.
If the centre of gravity of the mass is 0.2 mm from the axis of the shaft, compute the maximum
flexural stress in the shaft when it is running at 90 per cent of its critical speed. The vaue of
Young's modulus of the material of the shaft is 200 GN/mZ. [Ans. 14.8 kN/m?]
A vibrating system consists of a mass of 8 kg, spring of stiffness 5.6 N/mm and a dashpot of
damping coefficient of 40 N/m/s. Find (a) damping factor, (b) logarithmic decrement, and (c) ratio
of the two consecutive amplitudes. [Ans. 0.094 ; 0.6 ; 1.82]
A body of mass of 50 kg is supported by an elastic structure of stiffness 10 kN/m. The motion of
the body is controlled by a dashpot such that the amplitude of vibration decreases to one-tenth of its
origina value after two complete vibrations. Determine : 1. the damping force at 1 m/s ; 2. the
damping ratio, and 3. the natural frequency of vibration.  [Ans. 252 N/m/s; 0.178 ; 2.214 Hz]
A mass of 85 kg is supported on springs which deflect 18 mm under the weight of the mass. The
vibrations of the mass are constrained to be linear and vertical and are damped by a dashpot which
reduces the amplitude to one quarter of itsinitia value in two complete oscillations. Find : 1. the
magnitude of the damping force at unit speed, and 2. the periodic time of damped vibration.
[Ans. 435 N/m/s ; 0.27 5]
The mass of amachineis 100 kg. Its vibrations are damped by a viscous dash pot which diminishes
amplitude of vibrations from 40 mm to 10 mm in three complete oscillations. If the machine is
mounted on four springs each of stiffness 25 kN/m, find (a) the resistance of the dash pot at unit
velocity, and (b) the periodic time of the damped vibration. [Ans. 6.92 N/m/s; 0.2 9]
A mass of 7.5 kg hangs from a spring and makes damped oscillations. The time for 60 oscillations
is 35 seconds and the ratio of the first and seventh displacement is 2.5. Find (&) the stiffness of the
spring, and (b) the damping resistance in N/my/s. If the oscillations are critically damped, what is the
damping resistance required in N/m/s ? [Ans. 870 N/m ; 3.9 N/m/s; 162 N/m/q]
A mass of 5 kg is supported by a spring of stiffness 5 kN/m. In addition, the motion of mass is
controlled by a damper whose resistance is proportional to velocity. The amplitude of vibration
reduces to 1/15th of the initial amplitude in four complete cycles. Determine the damping force per
unit velocity and the ratio of the frequencies of the damped and undamped vibrations.
[Ans. 34 N/m/s: 0.994]
A mass of 50 kg suspended from a spring produces a statical deflection of 17 mm and when in
motion it experiences a viscous damping force of value 250 N at a velocity of 0.3 m/s. Calculate the
periodic time of damped vibration. If the mass is then subjected to a periodic disturbing force
having a maximum value of 200 N and making 2 cycles/s, find the amplitude of ultimate motion.
[Ans. 0.262 s ; 8.53 mm]

beam fixed at both ends, i.e. 0 = [Ans. 1450 r.p.m. ; 1184 to 2050 r.p.m.]
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Theory of Machines

A mass of 50 kg is supported by an elastic structure of total stiffness 20 kN/m. The damping ratio
of the systemis 0.2. A simple harmonic disturbing force acts on the mass and at any time t seconds,
the force is 60 cos 10 t newtons. Find the amplitude of the vibrations and the phase angle caused by
the damping. [Ans. 3.865 mm ; 14.93°]
A machine of mass 100 kg is supported on openings of total stiffness 800 kN/m and has a rotating
unbalanced element which results in a disturbing force of 400 N at a speed of 3000 r.p.m. Assum-
ing the damping ratio as 0.25, determine : 1. the amplitude of vibrations due to unbalance ; and 2.
the transmitted force. [Ans. 0.04 mm ; 35.2 N]
A mass of 500 kg is mounted on supports having atotal stiffness of 100 kN/m and which provides
viscous damping, the damping ratio being 0.4. The mass is constrained to move vertically and is
subjected to a vertical disturbing force of the type F cos wt. Determine the frequency at which
resonance will occur and the maximum alowable value of F if the amplitude at resonance is to be
restricted to 5 mm. [Ans. 225 Hz ; 400 N]
A machine of mass 75 kg is mounted on springs of stiffness 1200 kN/m and with an assumed
damping factor of 0.2. A piston within the machine of mass 2 kg has a reciprocating motion with a
stroke of 80 mm and a speed of 3000 cyclesmin. Assuming the motion to be simple harmonic,
find : 1. the amplitude of motion of the machine, 2. its phase angle with respect to the exciting
force, 3. the force transmitted to the foundation, and 4. the phase angle of transmitted force with
respect to the exciting force. [Ans. 1.254 mm ; 169.05° ; 2132 N ; 44.8°]

DO YOU KNOW ?

What are the causes and effects of vibrations ?

Define, in short, free vibrations, forced vibrations and damped vibrations.
Discuss briefly with neat sketches the longitudinal, transverse and torsional free vibrations.
Derive an expression for the natural frequency of free transverse and longitudinal vibrations by
equilibrium method.

Discuss the effect of inertia of the shaft in longitudinal and transverse vibrations.

Deduce an expression for the natural frequency of free transverse vibrations for a simply supported
shaft carrying uniformly distributed mass of m kg per unit length.

Deduce an expression for the natural frequency of free transverse vibrations for a beam fixed at
both ends and carrying a uniformly distributed mass of m kg per unit length.

Establish an expression for the natural frequency of free transverse vibrations for a simply sup-
ported beam carrying a number of point loads, by (a) Energy method ; and (b) Dunkerley’s method.
Explain the term ‘whirling speed’ or ‘critical speed’ of a shaft. Prove that the whirling speed for a
rotating shaft is the same as the frequency of natural transverse vibration.

Derive the differential equation characterising the motion of an oscillation system subject to vis-
cous damping and no periodic external force. Assuming the solution to the
equation, find the frequency of oscillation of the system.

Explain the terms ‘under damping, critical damping’ and ‘over damping’
A thin plate of area A and mass mis attached to the end of a spring and is
allowed to oscillate in a viscous fluid, as shown in Fig. 23.25. Show that

=M ? - 2
w=- (o)
where the damping force on the plate is equal to 1. AV; v being the velocity. Fig. 2325

The symbols w and wy indicate the undamped and damped natural circular frequencies of
oscillations.

Explain the term 'Logarithmic decrement' as applied to damped vibrations.

Establish an expression for the amplitude of forced vibrations.

Explain the term ‘dynamic magnifier’.

What do you understand by transmissibility ?
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OBJECTIVE TYPE QUESTIONS

When there is a reduction in amplitude over every cycle of vibration, then the body is said to have
(&) freevibration (b) forced vibration (c) damped vibration
Longitudinal vibrations are said to occur when the particles of a body moves

(a) perpendicular to its axis (b) pardlel to its axis

(c) inacircle about its axis

When a body is subjected to transverse vibrations, the stress induced in a body will be

(a) shear stress (b) tensile stress (c) compressive stress

The natural frequency (in Hz) of free longitudinal vibrations is equal to

1 S 1 g 0.4985

@ >m ® 5% ©) &
(d) any one of these
where  m = Mass of the body in kg,

s = Stiffness of the body in N/m, and

O = Static deflection of the body in metres.
The factor which affects the critical speed of a shaft is
(a) diameter of the disc (b) span of the shaft
(c) eccentricity (d) al of these
The equation of motion for a vibrating system with viscous damping is

If the roots of this equation are real, then the system will be

(a) over damped (b) under damped (c) critically damped

In under damped vibrating system, if x; and x, are the successive values of the amplitude on the
same side of the mean position, then the logarithmic decrement is equal to
(@ x/x, (b) log (x,/x,) (c) log, (x,/x,) (d) log (x;-%,)
The ratio of the maximum displacement of the forced vibration to the deflection due to the static
force, is known as

(a) damping factor (b) damping coefficient
(c) logarithmic decrement (d) magnification factor

In vibration isolation system, if w/ &}, islessthan ﬁ , then for al values of the damping factor, the
transmissibility will be
(a) less than unity (b) equa to unity (c) greater than unity (d) zero
where  w = Circular frequency of the system in rad/s, and
&), = Natural circular frequency of vibration of the system in rad/s.

In vibration isolation system, if w/w, > 1, then the phase difference between the transmitted force
and the disturbing force is

@) 0° (b) 90° () 180° (d) 270°
ANSWERS

1. (© 2. (b) 3. (b) 4. (d) 5. (d)

6. (a) 7. (b) 8. (d) 9. (¢ 10. ()
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